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1 Regularization for System Identification

The prediction error approach is to estimate the parameters of a model by

θ̂ = argmin
θ

V (θ), (1)

where the criterion function V (θ) is often a weighted norm of the prediction
errors

ε(k, θ) = y(k) − ŷ(k|θ). (2)

This is a very general approach which can be applied to both linear and
nonlinear model structures.

When the dimension of θ is large, numerical problems might arise and the
variance of the parameters estimates can increase. One way to cope with
these problems is to include a regularization term in the estimation criterion

θ̂ = argmin
θ

V (θ) + λ(θ − θ∗)T R(θ − θ∗). (3)

A Bayesian interpretation is that θ has a prior distribution that is Gaussian
with mean θ∗ and covariance matrix proportional to 1

λ
R−1. Therefore, a way

of thinking about the regularization term conceptually is that θ∗ represents
an initial guess for the unknown parameter vector and that λR decides the
confidence in this guess. An often used special case is when θ∗ = 0, which
is referred to as Tikhonov regularization. The special case when θ∗ = 0 and
R = I is called Ridge regression.

Note that the covariance matrix of θ is denoted by Σ in the lecture notes
and that R is inversely proportional to Σ. A different notation is used here
in order to be coherent with the System Identification Toolbox.

1.1 Bias/variance trade-off in FIR-modelling

First, we will consider the problem to estimate the impulse response of a
linear system as a finite impulse response (FIR) model. FIR models are
estimated with the command

m = arx(z,[0, nb, 0]);
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in the System Identification Toolbox. The choice of nb is important
because a large nb is required in order to capture slowly decaying impulse
responses without losing accuracy but a large nb also gives many model pa-
rameters which increases the estimation uncertainty. This means that the
choice of nb is essentially a trade-off between bias and variance.

Exercises for Section 1.1

Let the true system be a second-order Butterworth filter

G(q) = 0.02008 + 0.04017q−1 + 0.02008q−2

1 − 1.561q−1 + 0.6414q−2 . (4)

In a simulation experiment, 1000 data points have been collected based on
this system with a sample time of 1 second. In order to load this data into
your Matlab workspace, run

load regularizationExampleData.mat eData
z = eData;

1. By looking at the system (4), can you determine a suitable model order
for your FIR model? Is the true system included in the model class?
Plot the impulse response of the true system. To plot the impulse
response, the function calls

[y,t] = impulse(G);
plot(t, y);

can be used. Here G can be either a system or model object.

2. Estimate an FIR model of high order, for example nb = 50, and com-
pare the estimated model’s impulse response with the impulse response
of the true system.

3. Try some lower values of nb and see if you can get an impulse response
with less variance.

4. Now try to get a good bias/variance trade-off using ridge regression
for an FIR model of order 50. This can be done with the series of
commands
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aopt = arxOptions;
aopt.Regularization.Lambda =1 ;
m50r = arx(z, [0, 50, 0], aopt);

Again, compare the estimated model’s impulse response with the im-
pulse response of the true system.

5. As a final thing, try to estimate good values for the regularization pa-
rameters, R and λ, prior to the model estimation using the commands

ropt = arxRegulOptions(’RegularizationKernel’,’DC’);
[Lambda,R] = arxRegul(z,[0 50 0], ropt);

Here ’DC’ determines which regularization kernel is used. The esti-
mated values for R and λ can be used in the model estimation with
the commands

aopt = arxOptions;
aopt.Regularization.Lambda = Lambda;
aopt.Regularization.R = R;
m50tc = arx(z,[0 50 0],aopt);

1.2 Regularized ARX-models for Estimating State-space
Models

To estimate the impulse response from data a state-space model on innova-
tion form can be used. Assuming that the data is saved as z and has unit
sampling time, this can be done with the command

mn = ssest(z,n,’Ts’,1)

The catch is to determine a suitable model order, n. There are two commonly
used methods for this

1. Cross validation (CV): Divide the dataset into two parts, one for es-
timation and one for validation. Estimate models for n = 1, . . . , M us-
ing the estimation dataset and evaluate the fit to the validation dataset
using the compare command
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copt = compareOptions(’InitialCondition’, ’z’);
[~,fitn] = compare(zv, mn, copt);

Determine the order n that maximizes the fit. Then reestimate the
model using the whole data record.

2. Use the Akaike criterion (AIC): Estimate models for orders n =
1, . . . , M using the whole dataset and then pick that model that mini-
mizes

aic(mn);

An alternative way of doing this is to first estimate an impulse response
of high order and then use model reduction techniques. In the System
Identification Toolbox, this can be done with the command

mr = ssregest(z, n)

which first estimates an FIR model of automatically chosen high order and
then performs balanced model reduction to the chosen order, n, as explained
in the lecture notes.

Exercises for Section 1.2

Now, consider a different system. This time a 30:th order linear system with
colored measured measurement noise

y(k + 1) = G(q)y(k) + H(q)e(k). (5)

In a simulation experiment, 210 data points have been collected based on
this system with a sample time of 1 second. In order to load the true system
and the data into your /matlab workspace, run

load regularizationExampleData.mat m0
load regularizationExampleData.mat m0simdata
z = m0simdata;

1. Plot the impulse responses of G and H
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impulse(m0);
impulse(noise2meas(m0));

2. Find the CV choice of the model order (M = 30 is sufficient).

3. Find the AIC choice of the model order (M = 30 is sufficient).

4. Compare the impulse responses of the estimated models with the im-
pulse responses of the true system.

5. Estimate a high-order ARX model (for example na = 5, nb = 60 and
nk = 0) using regularization and let the function arxRegul determine
the regularization parameters. Compare the impulse responses of this
model with the impulse responses of the models estimated before.

6. Now, try to perform balanced model reduction on this ARX model.
This can be done with the command

mredn = balred(idss(marx),n);

How small n can you choose and still obtain accurate impulse re-
sponses?

1.3 Bias/Variance Trade-off in Grey-Box Models

When performing greybox estimation it is common that prior physical knowl-
edge is available about the parameters. In order to obtain a balanced trade-
off between this prior information and the information in the collected data,
regularization is a prime tool.

Exercises for Section 1.3

Consider a DC motor with static gain K, time constant τ and transfer func-
tion to shaft angle

G(s) = K

s(1 + sτ) . (6)

Assume that we from prior knowledge believe that K is about 4 and τ is
about 1. In a simulation experiment, data was collected using this system.
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Both the angle and the angular velocity were measured. The true parameters
in this simulation were K = 2.2 and τ = 0.85. In order to load the data into
your Matlab workspace, run

load regularizationExampleData.mat motorData motorData_NoiseFree
z = motorData;
z0 = motorData_NoiseFree;

Here z0 is a dataset collected without any disturbances.

1. Let the angle be denoted by x1 and the angular velocity by x2 and cast
(6) on state-space form.

2. Write an idgrey model file for your found state-space model as

function [A,B,C,D] = dcmotor(tau, K, Ts)
A = ;
B = ;
C = ;
D = ;
end

An idgrey object can then be obtained with the command

mi = idgrey(’dcmotor’, {’time constant’,1; ’gain’,4}, ’c’);

where ’dcmotor’ is the name of the idgrey model file and the guessed
parameter values have been inserted as initial values. This model is
adapted to the observed data by

m = greyest(z, mi);

To see your estimated parameters, run

getpar(m)

What values for K and τ do you obtain?
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3. Compare the response of you estimated model with the output of the
true system using the disturbed dataset, z. Also, include the response
of the initial model mi, with guessed parameter values, in the compar-
ison.

4. Perform the same comparison using the undisturbed dataset, z0, for
validation.

5. To merge the data information with the prior information we can use
regularization

gopt = greyestOptions;
gopt.Regularization.Lambda = 100;
gopt.Regularization.R = [1000, 1];
gopt.Regularization.Nominal = ’model’;
mr = greyest(motorData, mi, gopt)

where R is chosen to reflect that τ is better known than K. The
option gopt.Regularization.Nominal = ’model’ means that the
regularization center, θ∗ in (3), is the initial model in the estimation
call, mi. Compare the response of the model mr with the previous
models, both using disturbed and undisturbed validation data.

Solutions with Discussion

The solutions below are not necessarily the only correct ones. Depending on
choices during data processing and estimation, your results may be perfectly
correct even if they do not exactly agree with the discussion below.

Solutions for Section 1.1

1. The true system is not of FIR-type. The impulse response has decayed
to zero after less than 50 samples which means that nb = 50 should be
sufficient.

2. The impulse response of the FIR-model with nb = 50 has high variance
and does not fit the true system well.

3. For example nb = 13 gives a fairly good result.
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4. The variance is reduced as compared to the unregularized estimates.

5. This reduces the variance even more. It should be mentioned that
the price with regularization is a bias in the response estimate. This
problem is seemingly insignificant in this example.

Solutions for Section 1.2

1. -

2. Using the 150 first datapoints for estimation, the CV choice is n = 4.

3. The AIC choice is n = 12.

4. The CV choice gives a model fit of 82.38% for the impulse response in
G and 73.70% for the impulse response in H. The AIC choice gives a
model fit of 83.01% for the impulse response in G and 59.20% for the
impulse response in H. This is if all the data is used for estimation.
To find the fit for the noise model you can run

y0 = impulse(noise2meas(m0), t);
yh = impulse(noise2meas(m), t);
100*goodnessOfFit(yh, y0, ’NRMSE’)

if you run Matlab from 2019 or earlier and

y0 = impulse(noise2meas(m0), t);
yh = impulse(noise2meas(m), t);
100*(1-goodnessOfFit(yh, y0, ’NRMSE’))

if you run Matlab from 2020 or later.

5. The high-order ARX model gives a model fit of 81.95% for the impulse
response in G and 75.97% for the impulse response in H.

6. Reducing the order of the model to n = 7 gives a fit of 82.20% for
the impulse response in G and 76.36% for the impulse response in H,
which is about as good as the initial high-order ARX model.
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Solutions for Section 1.3

1. A state-space representation is

ẋ1 = x2, (7a)

ẋ2 = −1
τ

x2 + K

τ
u. (7b)

2. The ODE-file can be written as

function [A,B,C,D] = dcmotor(tau, K, Ts)
A = [0 1;0 -1/tau];
B = [0; K/tau];
C = eye(2);
D = [0;0];
end

We get the estimates τ̂ = 0.57448 and K̂ = 2.1379.

3. Refining the model with data gives an improved fit in angle from 9.658%
to 29.5% and and an improved fit in angular velocity from 0.9975% to
4.162%. Here the comparison is done with disturbed data.

4. Refining the model with data gives an improved fit in angle from 20.68%
to 94.31% and and an improved fit in angular velocity from 25.6% to
85.29. Here the comparison is done with undisturbed data.

5. A comparison using disturbed data gives a fit for the regularized model
of 29.4% in angle and 3.854% in angular velocity. Notably, this is worse
than the model obtained without regularization.

6. A comparison using undisturbed data gives a fit for the regularized
model of 97.49% in angle and 94.44% in angular velocity. The fact
that regularization improves the adaption to undisturbed data but not
to disturbed data shows that regularization is useful for avoiding over-
fitting.
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