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Chapter 1

Introduction

The purpose of this lab is to model the two-cart system shown in Figure 1.1. The carts
are assumed to operate in a confined space with elastic walls. This elasticity is only
relevant when the carts are in contact with the walls and as a consequence the sys-
tem has switching characteristics depending on the carts’ positions, x1(t ) and x2(t ).
A greybox approach can readily be taken for modelling the system but in this lab the
goal is primarily to explore nonlinear blackbox-modelling techniques. Recently there
has been a wide interest in the research area of machine learning. Since that field also
deals with estimating (or learning) models, there are connections to the techniques
for modelling of dynamic systems which have been developed within the area of auto-
matic control. For example, commonly used deep neural network structures such as
feed-forward and cascade-forward networks can be viewed as nonlinear ARX (NLARX)
models, where as what is called recurrent neural networks can be viewed as nonlinear
OE (NLOE) models. In this lab, some of the connections between conventional system
identification and machine learning are pointed out. The lab is carried out in sim-
ulation by use of MATLAB and performing the lab requires the System Identification
Toolbox and the Deep Learning Toolbox.
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Figure 1.1: The studied two-cart system.
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Chapter 2

Preparation

The questions below, and all questions in the document marked as Preparation must
be done before attending the lab. Note that there are additional preparation exercises
in Chapter 3.

Solutions to all questions should be available upon request from the lab assistant.

The time spent during the scheduled lab session is only a small part of the complete
lab, as a major part is spent on the theoretical material during preparations. When the
lab starts, it is assumed that you have done all preparations and have a clear idea of the
tasks that will be performed during the lab.

Preparation 1 Read Sections 14.2, 11.4, 12.6 and 15.2-3 in the course book by Ljung,
Glad & Hansson.

Preparation 2 Revisit ”Computer Exercises in System Identification - Part 4” and solve
the first exercise.

Preparation 3 Read the complete lab-pm. There are some theoretical questions in the
pm which are supposed to be completed as preparation.
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Chapter 3

The lab

In this lab we will try to find models for the two-cart system presented above. This will
first be done by a greybox modelling approach and then by use of nonlinear blackbox
methods.

Items labeled Preparation are questions you are supposed to solve and fill out before
attending the lab.

Items labeled Task are questions you solve when attending the lab.

3.1 Modelling the system

We will first try to get a physical understanding for the two-cart system. As depicted
in Figure 1.1, the carts are assumed to operate in a confined space with elastic walls.
This elasticity is only relevant when the carts are in contact with the walls and we will
assume that the walls’ thicknesses are l1 and l2, respectively, such that

Fκ1 (x1(t )) =
{
κ1 (l1 −x1(t )) if x1(t ) < l1,

0 otherwise,
(3.1)

Fκ2 (x2(t )) =
{
κ2 (L− l2 −x2(t )) if x2(t ) > L− l2,

0 otherwise,
(3.2)

where κ1 and κ2 can be viewed as regular linear spring constants. Note that the signs
of Fκ1 (t ) and Fκ2 (t ) depend on how the free-body diagram is drawn. In addition to the
elastic walls the carts are connected by a regular linear spring, k, which we assume is
at rest when x2(t )−x1(t ) = lk . The system is actuated with the external force, F(t ). The
left and right carts are assumed to have masses m1 and m2 and to travel with veloci-
ties v1(t ) and v2(t ), respectively. Each cart is also subject to a rolling-resistance force
proportional to its own speed. We denote the friction coefficients by µ1 and µ2.
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Preparation 4 Denote the state vector by x(t ) = [
x1(t ) x2(t ) v1(t ) v2(t )

]T
, the input

by u(t ) = F(t ) and cast the two-cart system on state-space form

ẋ(t ) = f (x(t ),u(t )) . (3.3)

Hint: You can assume that 0 < x1 < x2 < L, i .e. that the springs are sufficiently stiff.

For identifying this system it would be ideal to have independent measurements of all
the 4 states. However, in practice it is often the case that only parts of the state vector
can be measured directly. Here we will assume that the carts’ positions are measured.

On the course webpage two datasets collected using the two-cart system can be found
which are called z_dist and z_undist, respectively. The first of these were collected
under presence of additive measurement noise, whereas the second dataset was col-
lected in undisturbed conditions. Having access to undisturbed data is possible be-
cause these experiments were performed in simulation.

Task 1 (Create a greybox model) Implement your derived state-space model structure
as an idnlgrey object in MATLAB using the same syntax as you did in Preparation 2. You
can use m1 = 0.025, m2 = 0.045, κ1 = 65, κ2 = 75, k = 55, µ1 = 4.5, µ2 = 4.5, l1 = l2 = lk =
2.5 and L = 10 as initial guesses for the parameters. It is often useful to specify the initial
values of the states, this can be done using the syntax
m0 = idnlgrey(’MODFILENAME’,[ny nu nx],theta0,x0);.

To validate you model, run the function validate_model(m0) found on the course web-
page.

Note: Make sure to use the initial state x0 of the disturbed data. The cart velocities can
be set to zero.
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Task 2 (Refine the estimates of the greybox model) What values for the parameters do
you get after refining the model using pem(.) with the disturbed data as estimation
data? Are the estimates reasonable from a physical point of view? Validate the model
using compare(.) with the undisturbed data as validation data.

Note: Since the initial values are not the same in the two datasets, the initial values of
the model must be updated for the validation. This can be done with the command
m = setinit(m, ’Value’, {zv.y(1,1), zv.y(1,2), 0, 0});.

Task 3 (Uncertain initial guesses for greybox estimation) Since the state-space repre-
sentation is nonlinear it is even more important to have good initial guesses for the pa-
rameters. Try corrupting your initial guesses and re-estimate the model. Are the results
still good? See how much you can shift the initial guesses and still obtain a decent model.

3.1.1 Discretization

The above derived system representations is in continuous time. For many applica-
tions this is a natural first step, because most known basic relationships are expressed
in terms of differential equations. However, the only way to observe a system is by mea-
surements which are generally obtained as a finite collection of values, i .e. in discrete
time. There are many ways to transform a continuous-time system representation to
a discrete-time approximation. The simplest is perhaps Euler’s explicit method. This
method is based on a finite-difference approximation of the derivative

ẋ(kTs) ≈ 1

Ts
(x(kTs +Ts)−x(kTs)) , k = 1, 2, . . . . (3.4)

Here Ts is the time difference between two consecutive samples and kTs denotes the
measurement sampling instants.

Preparation 5 Transform your derived continuous-time system representation to a discrete-
time approximation

x(kTs +Ts) = f̃ (x(kTs),u(kTs))
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using Euler’s explicit method.

Hint: You can assume that Ts = 1 for simplified notation.

Preparation 6 From Preparation 5, substitute the nonmeasurable states to describe the
system using only the measurable states and inputs.

Preparation 7 Based on Preparation 6, what values for na , nb and nk do you think
would be suitable for a (nonlinear) ARX model of this system?

Hint: Since we have multiple outputs, the values na , nb and nk will be matrices.
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3.2 Artificial neural networks

As we have seen before, a model is a mapping from past data to the space of the output.
In the nonlinear case, this mapping has the general structure

ŷ(t |θ) = g (ϕ(t ),θ), (3.5)

whereϕ(t ) as before denotes the regression vector. If we do not have particular insights
into the system’s properties, we should seek parameterizations of g that are flexible and
cover most kinds of system behavior. This would give us a nonlinear counterpart to the
linear blackbox structures that we have worked with before (ARX, OE, ARMAX, BJ). In
the nonlinear case there is however an even larger number of possible parameteriza-
tions to consider. One class of model structures that has a quite long history but has
gotten a new wave of attention recently, much thanks to the wide interest in machine
learning, is the artificial neural network.

3.2.1 Network representation

Artificial neural networks have the capability of arbitrarily accurately approximating
any reasonable function and have been successfully used in many applications. An
artificial neural network can be described by

ŷ(t |θ) =
d1∑
ℓ=1

γℓκ
(
αℓϕ(t )−βℓ

)
, (3.6)

where the model parameters, θ, to be identified is the set of γℓ ∈R, αℓ ∈R1×p , βℓ ∈R, for
ℓ= 1, ...,d1, where p is the length of the regression vector,ϕ(t ), and κ( · ) is an activation
function. Graphical illustrations of (3.6) look like a network where d1 is the number of
(blue) neurons in Figure 3.1.

As depicted in the figure, the neural network (3.6) consists of three layers. The left layer
includes the model inputs and in the right layer the model output is formed. The layer
in between the input and output layers is called the hidden layer. Since there is only
one hidden layer, the mapping (3.6) is referred to as a single-hidden-layer feedforward
neural network. The terms κ

(
αℓϕ(t )−βℓ

)
are the outputs of the hidden units (neu-

rons). The middle layer is referred to as hidden because the outputs of the neurons are
latent signals which a user of the network never sees, similar to the state vector in a
state-space representation.

Note that the output (3.6) of a single hidden layer network can also be written ŷ(t |θ) =
Cκ(A1ϕ(t )+b1), where C = [

γ1, ...,γd1

]
, and κ( · ) is applied element-wise to the vector

A1ϕ(t )+b1. The matrix A1 ∈ Rd1×p is constructed by stacking the αℓ:s, and b1 ∈ Rd1 is
constructed by stacking the βℓ:s.
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Figure 3.1: A graphical illustration of a feedforward neural network.

3.2.2 Deep learning

Networks with multiple hidden layers are referred to as deep networks and parame-
ter estimation for deep networks is known as deep learning. In this case the neuron
outputs of each layer are fed as input to the subsequent layer, such that

F1(t ) = κ(A1ϕ(t )+b1), (3.7a)

F2(t ) = κ(A2F1(t )+b2), (3.7b)

...

FNHL (t ) = κ(ANHL FNHL−1(t )+bNHL ), (3.7c)

ŷ(t |θ) = CFNHL (t ). (3.7d)

where Fi (t ), i = 1, . . . , NHL is the vector of neuron outputs from layer i . The Ai :s and
bi :s are constructed in the same way as A1 and b1. Expanding the network with addi-
tional hidden layers gives more parameters to estimate but at the same time it makes
the model structure more flexible. In many applications, for example image process-
ing and speech recognition, it has turned out to be very beneficial to consider deep
networks.

The expansion (3.7) is called a feedforward neural network. A variant of the feedfor-
ward net is obtained when all previous hidden units are used as regressors in the next
layer, not only the ones from the previous layer. This type of structure is called a cas-
cade network. Both feedforward and cascade networks are examples of NLARX mod-
els.

The NLARX models allow a very flexible dependence of the predicted output on the
regression vector ϕ(t ), but these mappings are static functions from the input u(t ) to
the output ŷ(t |θ) and do not explicitly involve time t . As in the linear case, by including

8



multiple lags of the input and the output in ϕ(t ) it is possible to describe dynamic sys-
tems with NLARX models. However, to describe systems with slowly decaying impulse
responses it is necessary to have a very high model order.

Recall from before that for linear output error (OE) models, lags of the predicted output
ŷ(t − 1) . . . ŷ(t −nb) are used in the predictor. The nonlinear OE (NLOE) versions of
the above presented model structures are in machine learning nomenclature referred
to as recurrent neural networks. Notably, for deep networks it is not only possible to
include lags of the predicted output in the regression vector but also to include lags of
the neuron outputs from the hidden layers. Recurrent networks thereby offer freedom
to define very flexible model structures. At the same time, the parameters of a recurrent
neural network are technically difficult to estimate. This is because the computations
of gradients w.r.t. θ are challenging and the feedback around the nonlinear system may
cause instability in the calculations.

3.2.3 Activation function

In artificial neural networks each neuron is associated with an activation function, here
denoted by κ(z). As seen in (3.6), the activation function of a neuron defines the output
of that neuron given an input or set of inputs. There are many different activation func-
tions that can be used and subsequently some of the most common ones are listed. The
simplest activation function is the purely linear one

κ(z) = z. (3.8)

This activation function is rarely used in the hidden layers but is frequently used for
the rightmost layer where the predicted output is formed.

Two often used activation functions are the logistic (sigmoid) function

κ(z) = 1

1+ez
, (3.9)

and the hyperbolic tangent function

κ(z) = sinh(z)

cosh(z)
= ez −e−z

ez +e−z
. (3.10)

Notably, the hyperbolic tangent function can be viewed as a rescaling of the logistic
function, such that the output also ranges to negative numbers.

All the three previously mentioned activation functions are continuously differentiable.
This is a very nice property to have when search methods are applied for finding the
network parameters. However, the perhaps most common activation function is the
rectified linear unit (ReLU)

κ(z) = max(z,0), (3.11)
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which is non-differentiable in the origin. This function picks the maximum between
the input and 0 and is unlike the sigmoid and the hyperbolic tanget functions, able
to give outputs in the whole interval [0,∞). The ReLU function makes the sum (3.6)
piecewise linear with breakpoints in βℓ for ℓ= 1, . . . , d1.

3.2.4 Deep learning in MATLAB

A major part of this lab can essentially be carried out by only using the Deep Learn-
ing Toolbox. The Deep Learning Toolbox is however more flexible than necessary and
provides the user with quite many extra design choices. Also, it does not only sup-
port time-series modelling but also models of other types like image processing and
speech recognition. Direct use of the Deep Learning Toolbox therefore requires some
extra work. One way of interacting with it is to use the System Identification Toolbox
as a wrapper. Doing so is convenient because it enables use of iddata objects, the con-
ventional model-order representation with na , nb and nk , as well as functions such as
compare and resid for model validation, which we have used previously throughout
this course.

The System Identificaiton Toolbox in itself supports estimation of neural networks with
a limited set of differentiable activation functions and a single hidden layer. For exam-
ple, a sigmoid neural network with 10 neurons can be estimated as

opt = nlarxOptions(’SearchMethod’,’lm’);
m10 = nlarx(data, [na, nb, nk], idSigmoidNetwork(10),opt);

Here ’lm’ is the the Levenberg-Marquardt algorithm which is a common way to solve
non-linear least squares problems. It is also known as damped least squares.

To estimate deep neural networks or networks with other activation functions, the Sys-
tem Identification Toolbox can be used as a wrapper to make calls to the Deep Learning
Toolbox. A neural network model can in this way be estimated by first defining a net
estimator and then applying the nlarx command

net_estimator = idFeedforwardNetwork(feedforwardnet(d));
Mnet = nlarx(data,[na nb nk],net_estimator);

Here the argument d which is passed to feedforwardnet is the number of neurons
used in the network. If a network with multiple hidden layers is desired, the d argument
can be passed as a vector containing the number of neurons in each layer.

Similarly, a cascade network can be estimated as

net_estimator = idFeedforwardNetwork(cascadeforwardnet(d));
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Mnet = nlarx(data,[na nb nk],net_estimator);

The default activation function if networks are estimated in this way is the hyperbolic
tangent function. If a network with rectified linear units is desired, the activation func-
tion of a specific layer, i , can be modified before the net estimator is defined as

net = feedforwardnet(d);
net.layers{i}.transferFcn = ’poslin’;
net_estimator = idFeedforwardNetwork(net);

In the same way, the activation function can be set to e.g . ’purelin’, ’logsig’ or ’tansig’.
It is also possible to specify a custom-made activation function.

3.2.5 Bias/variance trade-off

The error in an estimated model has two components. The first component is the bias,
which is the distance between the true system and the best model available in the set of
candidate models that the search is carried out over. The second component is called
the variance and is the distance between the best model available in the model set
and the model that is actually obtained. Unlike the bias, the variance will depend on
noise and other imperfections in the data. As the complexity/flexibility of the model
set increases, the bias will decrease and the variance will increase. This means that in
order to have a small total error, we want a model of sufficient flexibility with as few
free parameters as possible.

Assume that we skipped the physical modelling in Section 3.1 and instead directly ap-
plied a neural network model structure. In this case it is necessary to consider a net-
work with high complexity if we want to be certain that the true system is contained in
the model set.

Task 4 (Estimation using flexible model structure) Try estimating a couple of differ-
ent (single-hidden-layer) sigmoid networks with 10-50 neurons, using the disturbed data
for estimation. Compare the model fit with the one obtained using the greybox model
structure studied before. Primarily consider the undisturbed data as validation data but
also compare model fit with respect to the disturbed data.

Both system identificaiton and machine learning algorithms estimate models based on
finite sets of estimation data. During this estimation, the model is evaluated based on
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how well it predicts the observations contained in the estimation datasets. However,
the goal is usually to produce a model that generalizes, i .e. that predicts previously
unseen observations. This is the reason that a separate dataset for validation is com-
monly used. Overfitting occurs when a model fits the data in the estimation set well,
while showing a larger error on a set of previously unseen validation data.

Regularization, in the context of system identification and machine learning, refers
to the modification of an estimation algorithm done in order to prevent overfitting.
This often involves enforcing some sort of smoothness constraint on the model. The
smoothness can be imposed explicitly, by fixing the number of parameters in the model,
or by augmenting the cost function as in Tikhonov regularization like we saw in one of
the teaching sessions. Recall that Tikhonov regularization can be applied using the
System Identificaion Toolbox with the commands

opt = nlarxOptions(’SearchMethod’,’lm’);
opt.Regularization.Lambda = Lambda;
m = nlarx(data, orders, idSigmoidNetwork(d), opt);

Task 5 (Regularization for neural networks) Pick a sigmoid network structure with a
large number of neurons which results in poor fit to validation data and try including a
Tikhonov regularization term during estimation. How does this affect the fit to estima-
tion/validation data?

When estimating the parameters of nonlinear model structure, it is common to apply
a gradient descent method. Then, each iteration updates an approximate solution to
the estimation problem by taking a step in the direction of the gradient of the objec-
tive function. By choosing the step-size appropriately, such a method can be made to
converge to a local minimum of the objective function. For each iteration the fit to es-
timation data will increase. However, as we know a higher fit to estimation data does
not necessarily imply a higher fit to validation data. Another common way to regular-
ize the estimation procedure is therefore to apply what is called early stopping. This is
done by putting a restriction on the maximum number of iterations and can be done
in the System Identificaion Toolbox using the commands

opt = nlarxOptions(’SearchMethod’,’lm’);
opt.SearchOptions.MaxIterations = maxIt;
m = nlarx(data, orders, idSigmoidNetwork(d), opt);

Task 6 (Early stopping) Try applying early stopping with different values of maxIt when
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estimating your sigmoid networks. How does this affect the fit to estimation/validation
data?

Preparation 8 If you consider the activation functions in Section 3.2.3, is there any-
one in particular that you find suitable for describing the nonlinear spring forces? How
many neurons with the chosen activation function would be required in a single-hidden-
layer network to describe the nonlinear spring forces?

Preparation 9 (An ideal model structure) Assume that rectified linear units (ReLUs) are
used as activation functions in a single-hidden-layer network, think about how many
neurons that would be needed for obtaining a model structure which is able to exactly
describe the true system .

Task 7 Estimate the parameters of the model structure based on your intuition from
Preparation 9. Make sure to use the ReLU activation function in the network (see Sec-
tion 3.2.4). What number of neurons gives best model fit? Compare the resulting model’s
fit to data with the ones obtained before. Do you need regularization in this case?
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3.2.6 Recurent Neural Networks (Optional)

As a final thing we will use recurrent neural networks for describing the two-cart sys-
tem. As mentioned before, estimation of recurrent neural networks is a bit more chal-
lenging. Doing so therefore requires a direct call to the Deep Learning Toolbox. In
order to do so the data must first be transformed to a cell-array format. From an id-
data-representation, this can be done as

XTrain=cell(1,length(data.u));
YTrain=cell(1,length(data.y));
for j = 1:length(data.u)
XTrain{j} = data.u(j); % Inputs
YTrain{j} = data.y(j,:)’; % Targets
end

The network can then be estimated with the series of commands

net = layrecnet(layerDelays, hiddenLayerSize);
[inputs,inputStates,layerStates,targets] = preparets(net,XTrain,YTrain);
[model,tr] = train(net,inputs,targets,inputStates,layerStates);

Here layerDelays decides how many lags of the simulated output that are used in the
predictor. In order to use ŷ(t −1|θ) and ŷ(t −2|θ) in the predictor we should specify

layerDelays = 1:2;

As before, we can choose rectified linear units as activation functions with

net.layers{1}.transferFcn = ’poslin’

In order to check the fit between the model response and the validation data, a simu-
lation can be carried out as

[val_inputs,val_inputStates,val_layerStates,val_targets] = ...
preparets(model,XVal,YVal);
val_outputs = model(val_inputs,val_inputStates,val_layerStates);
tmp = cell2mat(val_outputs)’;
yh = [tmp(1, 1:2)’.*ones(net.numLayerDelays,2); tmp];

The model fit is most easily computed by fit = 100*(1-goodnessOfFit(yh,y0,’NRMSE’)).
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Task 8 (Optional) Estimate a couple of recurrent neural networks. How well do these
networks perform in comparison to the feedforward networks found before?
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