
Computer Exercises in System Identifica-
tion
Part 4

This version: 2023-10-09

REGLERTEKNIK

AUTOMATIC CONTROL

LINKÖPING

1 Identification of Nonlinear Physical Models

All parametric models we have considered until now have been linear. Sur-
prisingly often, these linear models are good descriptions of reality. One
explanation of this is that systems, which in reality are nonlinear, often are
well approximated by linear models when the inputs and outputs are within
certain ranges (linearization).

However, sometimes linear models are insufficient. This might be because
the model must be valid within such a large range that nonlinear phenomena
such as input limits occur, or that the dynamics is nonlinear and one choice
of linearization point is not enough for the required model range. The system
can also be nonlinear even when within a small range of inputs. One example
of the latter case is the static friction of a mass being pulled with force F
on a surface with friction. When F is smaller than the static friction Fs of
the surface, the mass will remain stationary. However, when F > Fs, the
mass will start moving, and is affected by a smaller kinetic friction Fk. If Fs

is large, the behavior of the system around the speed v = 0 cannot be well
described using a linear model, even when we only want to model the system
at low speed.

In this chapter we look at three types of nonlinear model structures:

• Nonlinear physically parameterized state-space models (idnlgrey in
SITB)

• Nonlinear ARX models (idnlarx in SITB)

• Hammerstein and Wiener models (idnlhw in SITB)

We now give a brief introduction of these model structures and describe how
to estimate them in SITB.

2

1.1 Nonlinear Physical State-space Models (idnlgrey)

Nonlinear state-space models in continuous time are described by

ẋ(t) = f(x(t), u(t), θ), (1a)
y(t) = h(x(t), u(t), θ) + e(t), (1b)

where e(t) is white noise for simplicity. The prediction then is (cancel the
noise!)

˙̂x(t) = f(x̂(t), u(t), θ), (2a)
ŷ(t|θ) = h(x̂(t), u(t), θ), (2b)

which is a simulation of the model without noise (compare with the OE model
predictor). This requires that the model is stable. The parameter θ can then
be estimated by minimizing the prediction error using the loss function

VN(θ) = 1
N

N∑
i=1

1
2(y(ti) − ŷ(ti|θ))2

Note
• In most cases where the system is unstable, the predictor must be stable

anyway, in order for the identification to be well-behaved. In the linear case
this is easily handled by using a more complex noise model than the white
noise model in OE (for example, ARMAX). For a nonlinear system, this is
very complicated (nonlinear observers) and is not implemented in SITB.
One way to remedy this is to include the controller used for the experimental
data collection in the model, and identify the closed-loop system from refer-
ence to output instead.

In SITB, nonlinear state-space models are defined and estimated similarly
to linear state-space models (idgrey) that we have considered previously.
The model is defined as a function in a separate m file (or mex file) with the
syntax:

function [dx,y] = MODFILENAME(t,x,u,p1,p2,...,pN,aux)
dx = ...
y = ...

end

3

(The code defining dx and y is omitted.) The main difference from before is
that the return values of the function are dx (ẋ(t) or x(t + T)) and y instead
of the matrices of a linear state-space model. The arguments are the current
time t (often unused), the state vector x, the input signal vector u, and all
the parameters p1,p2,...,pN. Additional arguments can be included in aux.
Thus, the function implements (2).

In order to identify the model, an idnlgrey model object must be created:

m0 = idnlgrey(’MODFILENAME’,[ny nu nx],par);

The second function argument [ny nu nx] defines the number of outputs,
inputs, and states of the model, respectively. The third argument par is an
object which contains information about the parameters p1,p2,...,pN. The
simplest alternative is that par is a vector with initial guesses for the parame-
ters p1,p2,...,pN, as before. More advanced alternatives are also available,
including naming each parameter and defining minimum and maximum pa-
rameter values. Run doc idnlgrey in the Matlab command prompt for
more information.

In SITB, idnlgrey models can be estimated in the GUI by first importing
the initial model using Import models, and then estimate the parameters
using Estimate and Refine Existing Models. It can also be done through
code:

m = pem(ze,m0);

The command computes an estimate of the parameters using a prediction
error method on the estimation data set ze, where the model structure is
defined by m0. The return value is the estimated model m. Note that SITB is
object-oriented, meaning that the same functions (for example pem and plot)
can be applied to many objects, and may give different results depending on
the object.

The estimated model m can now be analyzed, either in the GUI or it can be
done in code. For example the Model output plot can be created through:

figure; compare(zv,m);

4

where zv is the validation data. A summary of the estimated model (includ-
ing the estimated parameter values) can be shown by running

present(m);

1.2 Nonlinear ARX Models (idnlarx)

A nonlinear ARX model differs from a linear ARX model by allowing the
predictor ŷ(t|θ) to be a nonlinear function of old input and output signals:

ŷ(t|θ) = g(φ(t), θ)
φ(t) = (y(t − 1), . . . , y(t − n), u(t − 1), . . . , u(t − m))

The nonlinear function g(φ(t), θ) can be defined in many ways, see [1, Section
15.1]. One of the most common ways is to use a neural network with a
sigmoidal basis function [1, Eqs. (15.13) and (15.15)].

In the SITB GUI, the models are estimated by clicking Estimate and then
Nonlinear ARX models. This yields the dialogue shown in Figure 1. The

Figure 1: Prompt for estimation of nonlinear ARX-models.

model order is chosen under Regressors, and the nonlinearity can be set in
Output Funtion.

5

Custom regressors can be added by clicking Add regressor of type:, then
choosing Custom. These regressors can for instance be formed from physical
reasoning.

When a nonlinear ARX model has been estimated, the option Nonlinear
ARX appears in Model views in the main GUI window. This plot shows the
nonlinear function g. The function surface may be viewed from other angles
by selecting Style and then Rotate 3D.

1.3 Hammerstein and Wiener models (idnlhw)

Hammerstein and Wiener models are nonlinear model structures, which are
often perceived as somewhat simpler than nonlinear ARX models. They are
gotten by combining a linear dynamical system G(q) and a static nonlinearity
f(·):

• Hammerstein model (nonlinearity at the input):
y(t) = G(q)z(t), z(t) = f(u(t))

• Wiener model (nonlinearity at the output):
y(t) = f(z(t)), z(t) = G(q)u(t)

The structures can be combined, which yields a nonlinearity at both the
input and output, and a linear dynamical system in between; this is called
a Hammerstein-Wiener model. The models occur naturally when the in-
put behaves nonlinearly (like valves or saturations) or if the measurement is
nonlinear.

In the GUI, these models are estimated by clicking Estimate and then
Hammerstein-Wiener Models. This yields the dialogue shown in Figure 2.
The model order of the linear system is set in the tab Linear Block and the
nonlinearities in the input and output are set in the tab Input Nonlinearity
and Output Nonlinearity, respectively.

When a nonlinear model has been estimated, the option Hamm-Wiener ap-
pears in Model views in the main GUI windows. In this plot, the nonlinear
functions and properties of the linear system (Bode plot, step response, . . .)
can be studied.

6

Figure 2: Prompt for estimation of Hammerstein-Wiener models.

1.4 Exercises

1. Consider a tank system, where the inflow qin(t) is generated by an
electric pump controlled by the voltage u(t). The measured output
signal is the water level h(t) of the tank, and the maximum water level
H is 35 cm. An overview of the tank system can be seen in Figure 3.
Using Bernoulli’s law, a simple physical model of the water tank can
be derived as

d

dt
h(t) = k

A
u(t) − a

A

√
2gh(t) (3)

The cross-section area A of the tank is assumed to be known, but
the cross-section area a of the outlet pipe cannot be determined with
sufficient precision using a measuring tape. For simplicity, we have
assumed that the pump has a linear behavior qin(t) = k · u(t), where k
is an unknown gain.
In tankdata.mat (enter load tankdata), data from the tank system
is available. The file contains two data sets, ze and zv, each of which
is 17 minutes long and contains 1000 samples with a sample time of 1
second.

7

u(t)

35 cm

h(t)

0 cm

Figure 3: A tank system.

(a) Import and inspect the data sets. Do not remove the means of
the signals, because we later wish to estimate a model describing
the static levels accurately.

(b) Use the estimation data set ze and estimate a few linear discrete-
time models (for example ARX and state-space models) for the
tank system.
Simulate the models with the validation data set zv. Do the mod-
els always yield physically reasonable water levels (the water level
should always be between 0 and 35 cm)?

(c) Estimate the unknown parameters k and a in the model (3) with
A = 20 cm2 by first writing an idnlgrey file like in the previous
example. As initial values for k and a, pick for instance 10.
Simulate and compare the model with the result in (b). What is
the reason for the difference?

(d) By looking at the inputs and outputs, it can be seen that the pump
appears to have a dead zone (nothing happens when u is small).
Thus, a better pump model than (c) could be qin(t) = k·(u(t)−u0),
which yields

d

dt
h(t) = k

A
(u(t) − u0) − a

A

√
2gh(t)

where u0 is another parameter that must be estimated (a reason-
able initial guess is 0). Write a new m file (so that you still have

8

the first tank model to compare with) and estimate this extended
model. Compare with the earlier models.

(e) It appears that the dead zone in the input is the dominant non-
linearity. Thus, also try estimating a Hammerstein model, where
the linear model has order nb = nf = nk = 1 (we get these model
orders if (3) is linearized and discretized). The static nonlinearity
in the input can be set to Dead Zone or Piecewise Linear. Set
the output nonlinearity to None.
Simulate and compare the result to the earlier models. Also try
an OE model of the same model order in order to see the effect of
the nonlinearity in the Hammerstein model.
You can also plot the estimated nonlinearity by clicking Hamm-Wiener
in the GUI.

(f) Let us now apply a nonlinear ARX model to the system. If (3) is
discretized using Euler forward, we get:

h(t) = h(t − 1) + T
(k

A
u(t − 1) − a

A

√
2gh(t − 1)

)
and with y(t) = h(t) we have the model

ŷ(t|θ) = g(y(t − 1), u(t − 1), θ)

Estimate a nonlinear ARX model of this order.
Simulate the estimated model and compare the result to the earlier
models. Also plot the estimated model by clicking Nonlinear ARX
in the GUI.

(g) The nonlinear ARX model in (f) can be further improved by
adding the information about the nonlinearity

√
y(t − 1). Custom

regressors can be added by clicking Add regressor of type:,
and then choosing Custom. Depending on the choice of these re-
gressors, we can get closer to a physical model. Add the regressor
sqrt(abs(y1(t-1))) and compare with the other models.
Also try estimating an ARX model where g is linear by choosing
Nonlinear Function: None in Output Function.

2. Solve exercise 10.7 from the exercise book.

3. Solve exercise 10.5 from the exercise book.

9

Solutions with Discussion

The solutions below are not necessarily the only correct solution. Depend-
ing on choices during data processing and estimation, your results may be
perfectly correct even if they do not exactly agree with the discussion below.

1. (a) Load and inspect the data:

load tankdata
plot(ze,zv);

The data sets appear similar; the validation data has somewhat
lower average water level than the estimation data (13 vs. 17 cm).
Also note that the input has an average higher than 0.

(b) We estimate ARX and state-space models using Order Selection.
The ARX model of orders [5 7 1] and the state-space model of
order 3 have a model fit to validation data of 81% and 86% re-
spectively. With an OE [5 5 1] model, a fit of 87% is achieved.
This is hard to beat with linear models.
The code for estimating the models in code is (try right-clicking
a model created in the GUI):

marx = arx(ze,[5 7 1]);
mss = n4sid(ze,3,’N4W’,’CVA’,’N4H’,[15 39 39]);
moe = oe(ze,[5 5 1]);
figure; compare(zv,marx,mss,moe);

These models do not appear to fare well at modelling low water
levels. They sometimes give water levels below 0, which is not
physically reasonable. This is an indication that the tank system
contains nonlinear phenomena. This can also be seen by running:

advice(ze,’nonlinear’);

(c) Identification through idnlgrey is done by first defining the model
structure in the m file tank.m:

function [dx,y]=tank(t,x,u,k,a,aux)
A=20; g=9.81;
y=x;
dx=k/A*u-a/A*sqrt(2*g*x);
end

10

To estimate the parameters of the continuous-time nonlinear model,
run the following code in a Matlab script or in the command
prompt:

mgr1=idnlgrey(’tank’,[1 1 1],[10 10]);
mgr1=pem(ze,mgr1);

The model parameters and a simulation of the model on validation
data is shown by:

present(mgr1);
figure; compare(zv,mgr1)

The estimated parameter values are k = 20.4, a = 6.1. The
continuous-time model is simple (only two estimated parameters)
and always yields water levels between 0 and 35 cm, but the valida-
tion data model fit is 41.2% (and not more than 50% for estimation
data).
The reason for the poor model fit must be that the model struc-
ture is not accurate/good enough. The linear models are more
flexible and can fit the data better. Some of the assumptions we
made when forming the physical model were wrong. What as-
sumptions? Look at the input and output signals more closely.
The input varies between 4 and 8 V, and when the input is at 4 V,
the output is almost 0. Thus, the main candidate for the error is
the assumption qin(t) = k · u(t) because there is a dead zone in
the input where qin(t) is 0 even when u > 0 (maybe up to 3–4 V).

(d) Now, write a new m file, tank2.m:

function [dx,y]=tank2(t,x,u,k,a,u0,aux)
A=20; g=9.81;
y=x;
dx=k/A*(u-u0)-a/A*sqrt(2*g*x);

end

Estimate the model and display the result through:

mgr2=idnlgrey(’tank2’,[1 1 1],[10 10 0]);
mgr2=pem(ze,mgr2);
present(mgr2);
figure; compare(zv,mgr1,mgr2)

The model now gives a much better result. The parameter values
are k = 26.8, a = 3.78, u0 = 3.13 and the fit is 89.7%. This is a

11

better fit than the best linear models and in particular the water
levels are mostly physically reasonable. At one point in time, the
level h > 35 cm, but otherwise the levels are within the physical
limits 0–35 cm.

(e) in the GUI, the models are estimated by clicking Estimate and
then choose Hammerstein-Wiener models. The order of the lin-
ear system is chosen in Linear Block and the nonlinearities are
chosen in Input Nonlinearity and Output Nonlinearity. The
models can also be estimated in code:

mhw1=nlhw(ze,[1 1 1],idDeadZone,idUnitGain);
mhw2=nlhw(ze,[1 1 1],idPiecewiseLinear,idUnitGain);
oe111 = oe(ze,[1 1 1]);
figure; compare(zv,mhw1,mhw2,oe111);
figure; plot(mhw1,mhw2);

With this nonlinearity on the input, we get a model fit to vali-
dation data of 89.3% (dead zone) or 88.6% (piecewise linear with
10 terms). Both models keep the tank level within 0–35 cm. A
simple linear OE model has a model fit of 16.8%. The high model
orders in (b) thus appear to be used to model the nonlinearity in
the input.
When the nonlinearity is plotted, the dead zone is at roughly 4 V.
The differing slopes of the curves are compensated by the gain of
the linear system; thus, we should focus on the shape of the curve
rather than the slope.

(f) ARX models are estimated in the GUI by clicking Estimate and
then Nonlinear ARX models. The model order is chosen in Regressors
and the nonlinearity is specified in Output Function. Choose, for
example, Sigmoid Network (other choices give similar results).
The model can also be estimated in code:

nlarx1 = nlarx(ze,[1 1 1],’idSigmoidNetwork’);
figure; compare(zv,nlarx1);
figure; plot(nlarx1);

We get a model fit to validation data of 92.4%, but h > 35 at one
point in time for the validation data (like the second nonlinear
grey-box model mgr2).
When the nonlinearity is plotted, we can see a flat function surface
shifted vertically in order to handle the input dead zone. Thus,
there doesn’t appear to be any other notable nonlinearity.

12

(g) By adding the custom regressor, we get a model with fit 93.8%.
This is the best model thus far, and the levels stay within the
limits 0–35 cm. The models can also be estimated in code:

C = ’sqrt(abs(y1(t-1)))’;
nlarx2 = nlarx(ze,[1 1 1],’idSigmoidNetwork’,’Customreg’,C);
nlarx3 = nlarx(ze,[1 1 1],’idLinear’,’Customreg’,C);
figure; compare(zv,nlarx2,nlarx3);

We also try estimating a linear regression nlarx3, which is much
less complex than nlarx2. This model has 4 parameters:

ŷ(t|θ) = θ0 + θ1y(t − 1) + θ2u(t − 1) + θ3

√
|y(t − 1)|,

where the constant term θ0 is automatically added for nlarx. This
term makes a notable difference because it corrects for the dead
zone. With this model, we get a model fit of 91.9%. The model
is slightly worse at high tank levels in comparison to nlarx2.

2. See textbook, use ’idSigmoidNetwork’ instead of ’sigmoid’ and
’idPiecewiseLinear’ instead of ’pwlinear’.

3. See textbook, use ’idLinear’ instead of ’linear’.

References

[1] L. Ljung, T. Glad and A. Hansson. Modeling and identification of Dy-
namic Systems. Studentlitteratur, 2021.

13

