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1 Parametric Identification of State-space Mod-
els

Until now, we have worked with models

y(t) = G(q, θ)u(t) + H(q, θ)e(t), (1)

where the transfer functions G(q, θ) and H(q, θ) are rational, and the pa-
rameters are the coefficients of the numerator and denominator polynomials.
Another common model structure is state-space models

x(t + 1) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t), (2a)
y(t) = C(θ)x(t) + D(θ)u(t) + e(t), (2b)

(for simplicity, written in innovation form, see [3, p. 99] for more information).
In this description, x(t) is the state vector, A(θ), B(θ), K(θ), C(θ) and D(θ)
are matrices of conformable dimensions, and θ is the parameter describing
unknown elements in the matrices. The state-space model (2) is just another
way to write the linear model (1). By using the time shift operator q, (2)
can be written in the form (1) through

G(q, θ) = C(θ)(qI − A(θ))−1B(θ) + D(θ), (3a)
H(q, θ) = C(θ)(qI − A(θ))−1K(θ) + I. (3b)

The predictor ŷ(t|θ) is given by

x̂(t + 1, θ) =A(θ)x̂(t, θ) + B(θ)u(t)+
+ K(θ) [y(t) − C(θ)x̂(t, θ) − D(θ)u(t)] , (4a)

ŷ(t|θ) =C(θ)x̂(t, θ) + D(θ)u(t). (4b)

1.1 Black-box State-space Models

State-space models are equally flexible as ARMAX models. This means that
the system and noise models share poles, but have different zeros. If we fix
K = 0, we instead get an OE model. An advantage of state-space models
is that multivariate systems (systems with several inputs and outputs) are
easy to model. For a state-space model with nx states and one input and
output, there are in total n2

x + 3nx + 1 parameters (the nx × nx matrix A(θ),
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the vectors B(θ), C(θ), K(θ) and the scalar D(θ)). All these parameters are
not required to describe a system; it is enough to use as many parameters
as in an ARMAX model. There are thus many degrees of freedom in the
model parameterization. For example, it is enough to put the coefficients
of the denominator of G and H in the first column of A(θ), and to put the
coefficients of the numerator of G and K into B(θ) and K(θ). Other elements
should contain ones and zeroes (compare observable canonical form, [1]). The
parameterization is handled automatically in SITB, so the only thing to be
remembered is that different matrices may give the exact same input output
description.

In the GUI of SITB, state-space models are estimated by clicking Estimate
and then State Space Models.... For state-space models, choose the num-
ber of parameters Model Order. Order selection is also available by clicking
Pick best value in the range. Under Delay, the input delay can be cho-
sen by entering it in Input Delay, and you can also choose if you want to
estimate K (equivalent to ARMAX) or set it to zero (equivalent to OE) by
checking or unchecking Include disturbance component (K).

To estimate state-space models, two main types of methods exist:

• Prediction error methods (PEM)

• Subspace methods (N4SID)

Prediction error methods are often most accurate, but suffer from getting
stuck at local maxima in the loss function V (θ). The estimates may some-
times be very bad if the minimization is not started close enough to the right
model.

Subspace methods consist of two steps. The first one is to estimate the
state vector x(t) (or the observability matrix) by projections into certain
subspaces formed from the data. When this state vector is estimated, the
matrices in the state description can be computed by solving a linear least
squares problem (like ARX). The first step is also a least squares problem,
and thus there are no problems with local minima. Subspace methods are
based on approximations, however, since in reality an infinite amount of data
is needed to estimate the state vector (or the observability matrix) accurately.
The best combination is to start with a subspace method and then improve
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the model through prediction error minimization (this is done automatically
when estimating a state-space model using PEM in SITB).

In Estimation Options, more settings can be changed. In particular the
parameter N4Horizon may need to be changed to get better estimates with
N4SID. The parameter sets the prediction horizon (and the number of old y
and u which is used for prediction) in the first stage of the subspace method.
Sometimes (in particular for oscillatory systems), this parameter might need
to be increased in order to get good estimates. The exact value depends on
the problem, but try something between 10 and 200.

Exercises for Section 1.1

1. Let us return to exercise 3 from the nonparametric identification ses-
sion: the vibration analysis data. The file vibrationdata.mat (run
load vibrationdata) contains the iddata objects zh (impulse ham-
mer) and zs (shaker). Furthermore, the true system Gd is included,
which can be used in order to verify the estimated models.

(a) Import the data set zs, preprocess it, and split it into estimation
and validation data.

(b) First estimate an ARX model, for example by Order Selection.
First look at Model output. Also compare the frequency response
Frequency resp with the best spectral model from before (you
can also import the true system Gd through Import models for
comparison).

(c) How many poles are required to describe every resonance in the
system?

(d) Now try to estimate a more advanced model to improve model fit.
For instance, choose an OE model (which in fact gives an accurate
input-output description even if the noise is not white) with orders
chosen from (c). For simplicity set nf = nb and nk = 1. Is the OE
model an improvement?

(e) Now try to estimate a state-space model with order chosen from
(c). For a state-space OE model, uncheck Include disturbance
component (K) in Model Structure. Try changing N4Horizon
in Estimation Options until you get a good estimate.

(f) Model order can also be studied using Pick best value in the
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range. Try this with N4Horizon = 200. Is this consistent with
what you found in (c)?
Hint: The meaning of Log of Singular Values in the Y-axis
of the model order plot can be seen as a measure of how much
the additional state affects the input-output description. A small
value means that the state can be removed with small effect on
the input-output description.

Note
• The system in exercise 1 is highly oscillatory. This is very demanding for

identification methods.

• While OE and state-space with K = 0 yield the same input-output description,
the results may differ because of the different estimation methods for the
models.

• ARX and N4SID do not suffer from getting stuck at local minima for the
loss function V (θ), but other methods require good starting guesses of the
parameters to avoid local minima. This is especially sensitive for oscillatory
systems (a resonance peak at the wrong frequency can yield a worse model
than no resonance peak at all).

2. (a) Let us return to the electric motor with load from the previous
sessions. Load the data set from the file elmotor.mat, with the
vector u and y which contain 1000 data points of the input and
output signals, which have been collected with sample time 0.3 s.
Preprocess and split the data into estimation and validation data
(for instance by using Quick start, but make sure to check that
the output is reasonable!).

(b) Estimate a few state-space models using Pick best value in
the range. Compare the result with the models you got from ear-
lier sessions. Try both with and without a noise model (check or
uncheck Include disturbance component (K)) and compare.

3. Bonus: Do exercises 9.13 (chemical reactor) and 9.14 (evaporator) in
exercise book to try estimating state-space models for multi-input and
multi-output signals.
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1.2 Physically Parameterized State-space Models

In many cases, it is interesting or even necessary to estimate models param-
eterized using physical parameters (“grey-box models”).

Physically parameterized continuous-time state-space models have both ad-
vantages and disadvantages in comparison to black-box models. This section
shows how to estimate a physically parameterized model from data and com-
pares this approach with traditional black-box models.

We now illustrate how physical parameters can be estimated in SITB by an
example. A model for a DC motor [1, p. 18] can be described by the transfer
function

G(s) = k

s(τs + 1) . (5)

If we instead write the model in state-space form, we get

ẋ(t) =
(

0 1
0 −1/τ

)
x(t) +

(
0

k/τ

)
u(t),

y(t) =
(
1 0

)
x(t).

(6)

To estimate the system we introduce the unknown parameters

θ1 = τ, θ2 = k, θ3 = x1(0).

We make an initial guess for these parameters as

θ1 = 0.1, θ2 = 1, θ3 = 0.

The structure of the model is defined in an m-file (in this example, dcmotor.m)
as

function [A,B,C,D,K,x0]=dcmotor(par,T,aux)
A=[0 1; 0 -1/par(1)];
B=[0; par(2)/par(1)];
C=[1 0];
D=0;
K=[0; 0];
x0=[par(3); 0];

end
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where T is the sample time and aux are other auxiliary arguments. In the sim-
plest case with a continuous-time state-space model, these arguments need
not be used (write help idgrey for more information). In the identification,
this function is used to compute the system matrices A, B, C, D and K and the
initial statex0 for a given value of the parameter vector par. To identify the
model, we must now create a model object as

m0=idgrey(’dcmotor’,[0.1 1 0],’c’);

The second argument [0.1 1 0] is the initial guess of the parameter vector
par = θ, and ’c’ means that the state-space model is continuous. The
model parameters can now be estimated in the GUI by clicking Estimate and
then Refine Existing Models. This yields the dialogue shown in Figure 1.
The model object m0 is entered in Initial Model. The model can then be
estimated by clicking Estimate.

Figure 1: Prompt for estimation of physical models.
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Note
• You don’t have to introduce parameters for the initial state x0 (where par(3)

is used in the example) if you don’t want to. Instead, you can choose Estimate
in Initial conditions under Estimation Options in Figure 1. If the
initial states are left fixed, the parameter estimates may be poor.

• The choice of initial parameter guess can be tricky and usually requires some
physical knowledge of the system to be modeled. This is a disadvantage of
physically parameterized models. One way to get a reasonable initial guess
can be to try some values and compare with a spectral model or a black-box
model. If there are resonance peaks in the system, the parameters should have
values such that at least some resonance peak appears in the interval between
0 and ωs/2 (the Nyquist frequency). When parameters are changed, the Bode
diagram should also change in this interval; otherwise the parameters will not
be identifiable.

Exercises for Section 1.2

4. Again consider the electric motor (load elmotor). A simplified phys-
ical model for the electric motor is given by

u =Ri + kmω1

ϕ̇ =ω1 − ω2

J1ω̇1 =kmi − kϕ − d(ω1 − ω2)
J2ω̇2 =kϕ + d(ω1 − ω2)

(7)

where u input voltage, km and R are a motor constant and resis-
tance (the inductance is neglected), ϕ is the difference of angles
between the motor and the load, ω1 and ω2 are the angular veloc-
ities of the motor and load, J1 and J2 are inertia for the motor
and load, and k and d is angular spring and damper coefficients
respectively.

(a) Create a state-space model with u as input, ω2 as output, and the
state-space vector as x =

[
ϕ ω1 ω2

]T
.

(b) Assume that the motor parameters have known values J1 = 1,
km = 0.468, R = 0.21, but that the load is unknown. Estimate the
physical parameters J2, k, d by first creating an m-file defining the
state-space model (7), and then creating an idgrey object like the
previous example. Estimate the initial state by selecting Estimate
in Initial States. As an initial guess of the parameters, choose
for instance J2 = 1, k = 1, d = 0.
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Hint: The estimated parameters can be viewed by dragging the
model icon to the area To Workspace and then writing
m0c.ParameterVector in the command prompt (if the model is
m0c). Enter get(m0c) to see what properties can be studied.
Among others, m0c.CovarianceMatrix may be interesting.

(c) Compare the physical model with the earlier parametric and non-
parametric models (for instance an SPA model and a state-space
model). Can you see any similarities or differences?

(d) Physical models usually have fewer unknown parameters, which
yields lower estimation variance. Study this by plotting confi-
dence intervals in the various plots (choose Show 99% confidence
intervals in the menu Options in every plot). Study in partic-
ular the frequency response and the poles and zeros.

(e) What are the disadvantages of physical models?

Solutions with Discussion

The solutions below are not necessarily the only correct solution. Depend-
ing on choices during data processing and estimation, your results may be
perfectly correct even if they do not exactly agree with the discussion below.

1. (b) ARX with Order selection yields the order [10 5 4] as the
best fit. This model is almost useless: it gives a fit to validation
data of 3.89%! In the frequency domain (Frequency resp and
Noise spectrum) we can see that the model mostly fits the noise
spectrum. (Compare SPAFDR with 5000 logarithmically spaced
frequencies.)

(c) For each resonance peak we need a complex pole pair. There
are 4 clearly visible resonances (and maybe another one around
45 rad/s) so we need 8 (or maybe 10) poles.

(d) An OE model with order [8 8 1] has a model fit of 49.1%, which
is a clear improvement. However, in the frequency response we can
see that the model only has captured the resonance at 6.5 rad/s.
There is more work to do.

(e) A state-space model of order 8 (estimated using N4SID) gives an
unstable model (with noise model) or a model fit of -0.16% (with
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no noise model, K = 0). This doesn’t appear to work at all.
However, by increasing the prediction horizon N4Horizon, more
resonance peaks are captured. With N4Horizon=200 and K = 0
we get a model fit of 98.6% and all the first 4 resonances are
captured.

(f) We can see that the singular values (roughly, the input-output
gain which the additional state adds) drops off after order 8. This
indicates that a higher model order will not affect the input-output
description much. This order was the one we found in exercise (c).

4. (a) With states x =
[
ϕ ω1 ω2

]T
, the matrices are:

A =

 0 1 −1
−k/J1 −(d + k2

m/R)/J1 d/J1
k/J2 d/J2 −d/J2

 , B =

 0
km/(RJ1)

0

 ,

K =

0
0
0

 , C =
[
0 0 1

]
, D = 0.

(b) First write an m file, for instance:

function[A,B,C,D,K,X0] = elmotorgrey(par,T,aux)

J1=1; km=0.468; R=0.21;
J2=par(1); k=par(2); d=par(3);

A = [0 1 -1; -k/J1 -(d+km^2/R)/J1 d/J1; k/J2 d/J2 -d/J2];
B = [0 km/R/J1 0]’;
C = [0 0 1];
D = 0;
K = [0 0 0]’;
X0 = [0 0 0]’;

end

This function is saved in the file elmotorgrey.m (same name as
the function). After this, create an idgrey object in Matlab
through

m0=idgrey(’elmotorgrey’,[1 1 0],’c’);

The model is estimated by selecting this model in Initial model
and clicking Estimate.
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The initial guess model can be imported through Import models.
This model has a model fit of 64.83%, which is fairly good. After
parameter estimation, we get a better model with fit of 92.16%.
The parameters areJ2

k
d

 =

 1.4723
0.7014

−0.0496

±

0.0125
0.0041
0.0041


where also the standard deviation is shown (sqrt(diag(m0c.Cov))).
Note that the damper coefficient is negative. This is not physically
realistic. However, the damper only marginally affects the model
performance. If the damper coefficient is set to 0 in the model, a
slightly reduced model fit of 91.32% is achieved.

(c) The model is compared with SPAFDR with 100 logarithmically
spaced frequencies, and a state-space model of order 3 (the same
number of states as the physically parameterized model, which
also is what order selection recommends). The state-space model
has a fit of 92.19% (estimated with PEM) or 91.61% (estimated
using N4SID). The physical model thus has a similar result as a
black-box model with the same order. The difference can be seen
in the noise model (Noise spectrum), where the physical model
fails to accurately describe the noise. This can be solved by also
parameterizing K in the physical model.

(d) In the frequency response we can see that the uncertainty is larger
in the black-box models. In particular, at higher frequencies the
relative uncertainty is large (because the frequency response am-
plitude decreases with higher frequency but the uncertainty the
same, compare (12.105) in [2]). For physical models, the uncer-
tainty is smaller due to fewer parameters. It doesn’t increase for
higher frequencies, which may be because the frequency response
of the physical model at this frequency band doesn’t depend much
on the estimated parameters.
For poles and zeroes, remember the difference between continuous-
time and discrete-time models (unit circle or imaginary axle are
stability limits, continuous-time pole at s corresponds to discrete-
time pole at z = eisT ). Despite this difference, we can see that
the uncertainty is significantly larger for the black-box model. In
particular the black-box model zeros are uncertain.

(e) Physical models contain prior knowledge of the system in the
model. Fewer parameters must then be estimated from data. This
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yields lower uncertainty/variance for the estimated parameters.
An obvious disadvantage is if this prior knowledge does not agree
with reality. We will then get low variance, but a bias in the
estimate caused by the inaccurate model assumptions. Another
problem is that it may be difficult to find a suitable initial guess of
the parameters. If the model is overparameterized, identifiability
may also be a problem, such as when you try to estimate both
α and β when only the product α · β occurs in the equations.
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