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1 Parametric Identification of Black-Box Mod-
els

Parametric black-box models are discussed in [2, Chapter 12]. For parametric
identification, it is important to have different data sets for estimation and
validation (evaluation) of the model. If only one data set is available, it is
typically split into two parts. This can be done in the GUI by clicking the
menu Preprocess and choosing Select range. Usually, it is often desirable
to remove the means of the signals, this can be done in the GUI by clicking the
menu Preprocess and choosing Remove means. A quick way to both split
the data set and remove the means, is to use Quick start in the Preprocess
menu.

1.1 ARX Models

We will first study how ARX models can be used in order to get an initial
understanding of the model dynamics and model order. In Figure 1, the
prompt shown by clicking Estimate and then choosing Polynomial Models.
In Structure, different model classes may be chosen. We will only consider
ARX models for now. In Orders, you can enter the desired ARX model
order. The order is a space separated list of integers na, nb, nk. A model
is estimated when one selects Estimate. An icon representing this model is
created in the main GUI window under Models.

Figure 1: Prompt for estimation of polynomial models.
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It may be useful to try many different model orders at once. By clicking
Order Selection and then Estimate, all models with polynomial orders
and time delays between 1 and 10 are estimated. The best model for each
model order between 2 and 20 (computed from the value of the loss function
on validation data) is then shown, see Figure 2. A rough estimate of the
model order can be taken as the model order where the loss function stops
decreasing significantly (“flattens out”). In Figure 2, this occurs in at around
the fifth bar. By clicking on the bar, we can see that na = 4 and nb = 1, which
corresponds to model order 5. This is the model with 5 total parameters
which gives the best fit to validation data. The models which you find useful
can be put into the main interface by clicking at the bar and then Insert.

Figure 2: Result of estimating all models of order 2 to 20.

Exercises for Section 1.1

We now return to the electric motor with load from Exercise 4, nonparametric
identification. The description is briefly repeated here.

An approximate physical model for the motor is given by

G(s) = 1
s3 + 0.9s2 + 1.1s + 0.46 (1)

In an experiment, 1000 data points have been collected with a sample time of
0.3 seconds. The data set has been saved in elmotor.mat, where the input
signal (voltage, V) is u and the output signal (angular velocity, rad/s) is y.
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Figure 3: Electric motor with load

1. Import the data set into SITB and study its time and frequency prop-
erties.

2. Preprocess the data, and split it up into estimation and validation data.

3. Plot the data in the time and frequency domains and ensure that ev-
erything looks normal; i.e., that no trends are in the data and that no
outliers are included.

4. By looking at the model (1), what model order should your (discrete-
time) ARX model have?
Hint: The model can be constructed and discretized in Matlab by
writing:

G = tf([1],[1 0.9 1.1 0.46]);
Gd = c2d(G,0.3);

5. Use Order selection to estimate many ARX models with different
model orders. What model orders seem good?

6. Try a few more model orders, and see if you can find a good model!

7. Choose one or a few models which you think are better than the others,
and study their properties more closely. Does the model behave like
you would expect?

1.2 Validation

Model validation is an important part of modeling, see [2, Chapter 16]. The
GUI offers many tools for this in Model Views:

• Model output. Predicted or simulated output signal for validation
data.
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• Model resids. Plots of the prediction error autocorrelation function
R̂ε(τ), and the prediction error and input cross-correlation function
R̂εu(τ), computed from the validation data.

• Frequency resp. Bode plot of the estimated model.

• Zeros and poles. Poles and zeros of the model.

(See [2, Chapter 16] for more information of what to look at for the various
choices.) Note in particular that one can see the uncertainty of the quantities
by choosing Show 99% confidence intervals in Options (other percent-
ages can also be chosen). For instance, this is relevant for Zeros and poles,
since overlapping uncertainty intervals for poles and zeros may indicate a
too high model order (pole and zeros are cancelling, and can just as well
be removed by reducing the model order). The estimated model parame-
ters with uncertainties can be shown by right-clicking on the model icon. A
window according to Figure 4 is then shown. The window also shows code

Figure 4: Information about an estimated ARX(2,1,1) model.

to compute the estimated model programmatically. Clicking Present prints
a model description to the Matlab command prompt. For the model in
Figure 4 (where na = 2, nb = 1 nk = 1), this is

arx211 =
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)

A(z) = 1 - 1.701 (+/- 0.02681) z^-1 + 0.7365 (+/- 0.02573) z^-2

B(z) = 0.07167 (+/- 0.008238) z^-1

Name: arx211
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Sample time: 0.3 seconds

Parameterization:
Polynomial orders: na=2 nb=1 nk=1
Number of free coefficients: 3
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Estimated using ARX on time domain data "elmotorde".
Fit to estimation data: 93.2% (prediction focus)
FPE: 0.01821, MSE: 0.01785
More information in model’s "Report" property.

The printout of the B polynomial should be interpreted as follows. B(q)
consists of only one parameter, which has an estimated value of 0.07167
and an estimated standard deviation (uncertainty) of 0.008238. Information
about the A polynomial, the value of the loss function, the sampling interval
of the data set, and the fit to estimation data is also shown.

Sometimes, it is better to have a model with good predictive performance,
and in other cases, it is better to have a good simulation model. This can be
studied in Model output by clicking Options and then choosing Simulated
Output or k Step Ahead Predicted Output (where k is an integer that you
must choose in Set prediction horizon).

Exercises for Section 1.2

1. Compare the frequency estimates (Frequency resp) of the black-box
models with the spectral models and your knowledge of the system.

2. Analyze the estimated prediction error autocorrelation function R̂ε(τ),
and the prediction error-input cross-correlation function R̂εu(τ), in
Model resids. Can you see any problems with your best models?

3. Study the uncertainty in the estimated parameters of your best models.
Are the estimates accurate? Are the parameters significantly different
from zero?

4. What model is the best one?
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1.3 General Black-box Models

We continue to study the electric motor which we discussed earlier. Now, we
will use more general model structures than before. The model structures
ARMAX, OE and BJ can be estimated in the same prompt as the ARX
models. Click Estimate, Polynomial models, and then select the desired
model structure in Structure.

Exercises for Section 1.3

1. If you saved the experiment from the previous section, load it. Oth-
erwise, import and preprocess the data as before, and re-estimate the
best ARX model you found.

2. Try finding even better models by testing ARMAX, OE, BJ, and state-
space models. Start your search by using the polynomial orders that
the best ARX model had.

1.4 An Industrial Application of System Identification

The identification of the electric motor which we looked at before was rela-
tively simple. The process is fairly linear, the measurement noise is low, and
the system has low order. For a trickier problem, we will now study a data
set from an industrial robot 1. Data has been collected when the robot is
performing a movement about axle 1, see Figure 5.

During the movement, motor torque (input) and motor angle (output) has
been measured. Estimation and validation data are stored as the iddata
objects ze and zv in the file irb1400.mat. The sample time is 0.00504 s
(downsampling and preprocessing has already been performed) and the data
sets each consist of 397 data points. In both cases, the input signal has
been low-pass filtered white noise, and the controller of the robot has been
activated. You know that the controller has high gain at low frequencies
(static errors are unwanted). You also know that the system is oscillatory
due to its construction.

1The robot is an IRB1400 from ABB
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Figure 5: The ABB IRB1400. Axle 1 is encircled.

Exercises for Section 1.4

1. The data set has been collected in feedback operation. How does this
influence the nonparametric spectral methods?

2. The system is oscillatory. What does this mean for nonparametric
methods?

3. Use the skills you learned from the electric motor modelling to find as
good as possible a model for this process.

Solutions with Discussion

The solutions below are not necessarily the only correct solution. Depend-
ing on choices during data processing and estimation, your results may be
perfectly correct even if they do not exactly agree with the discussion below.

Solutions for Section 1.1

2. It may be a good idea to let the estimation and validation parts of the
data set be equally large. Since we do not have much knowledge about
the data collection, in this case it suffices to subtract the mean of the
signals.
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3. Looks OK.

4. The discrete time model has order na = 3, nb = 3 and nk = 1 (thus
[3 3 1] in SITB notation) if we assume that the input is constant
between each sample instant.

5. You can get different results here, depending on how estimation and
validation data are created. Order selection indicates that orders [3
1 4], [4 1 5] and [4 2 4] may be suitable choices.

6. The models of order [2 2 1] and [3 1 4] have decent results in Model
output. By choosing a much higher order, for instance [8 2 3], a
much higher model fit is achieved in Model output. However, these
models have too many poles in comparison to the true system.

Solutions for Section 1.2

1. The Bode plots for low order models ([2 2 1] and [3 1 4]) seem OK,
but have two main flaws in comparison to the true model. First, the
resonance peak is off. It should be at 0.9 rad/s, but is at 0.6 rad/s.
Second, the slope of the bode plot is too low at high frequencies. The
model with order [8 2 3] has a resonance peak at 0.8 rad/s and the
slope at high frequencies is higher. This indicates that this model better
describes the true system.

2. Looking at the residual analysis of the selected models, the models of
order [2 2 1], [3 1 4] and [8 2 3] are similar. There are peaks in
both R̂ϵ(τ) and R̂ϵu(τ) which are outside the corresponding confidence
intervals. This indicates that there is information in the output signal
which cannot be explained well by any of these models.

3. All models have parameters which are significant (uncertainty smaller
than parameter value), but the model with order [8 2 3] has a few pa-
rameters where the confidence interval has the same order of magnitude
as the parameter.

4. From the discussion above, the model with na = 8, nb = 2 and nk = 3
appears to best describe the system. However, it has too many poles
in comparison to the true system.
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Solutions for Section 1.3

2. We try out different model structures. The search can be carried out
as follows:

– Try increasing model orders to get a good value of model fit.
– When the prediction error autocorrelation function R̂ϵ(τ) is out-

side the confidence interval, increase the noise model order(s).
– When the prediction error-input cross-correlation function R̂ϵu(τ)

is outside the confidence interval, increase the input model or-
der(s).

– When pole-zero cancellations appear to occur in the input or noise
model, or when certain parameters do not appear to be signifi-
cantly different from 0, reduce the corresponding model orders.
Look at confidence intervals!

– Ensure that reduced model orders do not yield notable reductions
in (prediction or simulation) model fit on validation data.

These objectives may sometimes be contradictory, so choose a good
trade-off!
We find that an ARMAX model with na = 3, nb = 1, nc = 3 and
nk = 2, or a state space model of order 3, appear to describe the
system very well.

Solutions for Section 1.4

1. The nonparametric methods we study here normally don’t work well in
feedback situations. Their performance depends on the strength of the
dependence between noise and input. In this case, the dependence is
strong for low frequencies and weaker for higher, which indicates that
we shouldn’t trust these estimates for low frequencies.

2. Since the system is oscillatory, the bode diagram should have clear and
narrow resonance peaks. Thus, a high frequency resolution should be
used.

3. The system can be fairly well modeled by a BJ model of order [8
4 4 10 1]. The fit to the nonparametric estimate is good for high
frequencies, model fit for validation data is very good, and by looking
at correlation functions, the residuals appear close to white.
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