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Nonlinear Identification

Nonlinear system identification is like the zoology of non-elephant animals

• A rich fauna: Many nonlinear model structures have been suggested
(and many are even universal approximators (able to approximate any
(well-behaved) function) when the model order is increased)

• Many estimation frameworks are available
• No general standards (concerning terminology, modeling objectives,

software tools, etc.)
• Results and methods have sometimes been rediscovered/reinvented

under new names

Here, we will go on a guided tour in this djungle and encounter 7 categories
of nonlinear models. . .
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Prediction-Error Minimization

The Prediction-Error Minimization (PEM) idea,

θ̂N = argmin
θ

VN (θ)

where VN (θ) =
1

N

N∑
t=1

‖y(t)− ŷ(t|θ)‖2

can be used also when the model structure is nonlinear.
• We need to be able to derive and compute the predicted output ŷ(t|θ)

using the chosen model structure
• Computation of the gradient

ψ(t, θ) =
d

dθ
ŷ(t|θ)

is often needed/useful for the numerical minimization of VN (θ)
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Nonlinear Grey-Box Models (Category 1)

Consider a first-principles state-space model (with unknown parameters θ
and additive white measurement noise):

ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ) + e(t)

The corresponding output prediction (a model simulation):

˙̂x(t) = f(x̂(t), u(t), θ)

ŷ(t|θ) = h(x̂(t), u(t), θ)

The PEM can be used to estimate θ. This is known as a nonlinear
grey-box model.
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Nonlinear Grey-Box Models in Matlab

Specify the model structure in a Matlab function (p1, . . . pN are parameters)

function [dx,y] = myfunc(t,x,u,p1,p2,...,pN,aux)
dx = ...
y = ...
end

The model is then defined using the command

m0 = idnlgrey(’myfunc’,[ny nu nx],par);

where nx, nu, nx defines the number of outputs, inputs and states and par
contains initial guesses for the parameters p1, . . . pN (and possibly more
information like intervals for each parameter)
The model is then estimated using

m = pem(ze,m0);
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Nonlinear Observers

The presence of process noise and instabilty of the true system require a
more general approach to the computation of the predicted output
• In this case, also previous outputs should be used to compute the

optimal predictor based on the model
• Nonlinear observers are needed in these cases (beyond the scope of this

course)
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Example: Nonlinear Grey-Box Model

The pitch dynamics of the JAS 39 Gripen fighter
jet can be modeled as

ẋ(t) =

(
a11x1(t) + a12x2(t)
f(x1(t)) + a22x2(t)

)
+Bu(t)︸ ︷︷ ︸

=f̃(x(t),u(t),θ)

+w(t)

y(t) = x(t) + e(t)

where x1 (= α) is the angle of attack, x2 is the
pitch rate, and u1 and u2 are the elevator and
canard control signals, respectively.

This is an unstable system with process noise
where the nonlinear function f is particularly
interesting to estimate. (PhD thesis from 2019)
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Example: Nonlinear Grey-Box Model. . .

Discretization using the standard Euler method
gives (xk = x(kTS), etc.)

xk+1 = xk + TS f̃(xk, uk, θ) + w̃k

yk = xk + ẽk

and an approximate nonlinear observer that
seems to work well can be defined as

x̂k+1 = x̂k + TS f̃(x̂k, uk, θ) +K(yk − ŷk(θ))
ŷk(θ) = x̂k

Here, both θ and K are estimated from flight test
data where the aircraft did a wind-up turn

Results (Larsson, 2019):

(the described method is
denoted PO and EKF is
an approach based on an
extended (linearized)
Kalman filter, present
model in black)
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Block-Oriented Models (Category 2)

One common approach to nonlinear modeling is to define the model
structure as consisting of a few linear dynamical and static nonlinear blocks
in series. This is known as block-oriented modeling.
• Hammerstein model:

y(t) = G(q)z(t), z(t) = f(u(t))

(both G and f contain parameters)
• Wiener model:

y(t) = f(z(t)), z(t) = G(q)u(t)

(both G and f contain parameters)
• Wiener-Hammerstein model: L+NL+L
• Hammerstein-Wiener model: NL+L+NL
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Silverbox Data Example

Consider a particular subset of a
benchmark dataset known as the
Silverbox data, which has been
collected from a nonlinear electric
circuit.
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Silverbox Data Example: Block-Oriented Models

Estimate a nonlinear model. . .
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Silverbox Data Example: Block-Oriented Models. . .

Configure the model structure
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Silverbox Data Example: Block-Oriented Models. . .

In this case, a Wiener model seems to
perform best on validation data
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Nonlinear Regression Models

A nonlinear ARX (NARX) model:

ŷ(t|θ) = g(ϕ(t), θ)

where
ϕ(t) = fϕ(y(t− 1), . . . , y(t− n), u(t), . . . , u(t−m))

Common special case:

ϕ(t) =
(
y(t− 1) . . . y(t− n) u(t) . . . u(t−m)

)
Nonlinear FIR (NFIR) models are obtained if ϕ does not depend on y
We will now look at four types of NARX models: Semi-physical models,
local models, local linear models and black-box NARX models
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Semi-Physical Models (Category 3)
A semi-physical model is a model where the measured data have been
transformed in a nonlinear way such that a linear model is enough to
describe the transformed input-output data.
• This transformation can be based on intuition, fundamental laws of

nature, high-school physics, etc.
• Example: Water is heated with an immersion heater: A linear model

from voltage to temperature will not be accurate, but a linear model
from the squared voltage (which is proportional to the power) to
temperature will work fine

• Sometimes, the nonlinear transformation is introduced by using
nonlinear regressors in a linear (in the parameters) regression model:
ŷ(t|θ) = ϕ(t)T θ with

ϕ(t) = fϕ(y(t− 1), . . . , y(t− n), u(t), . . . , u(t−m))

(Here, θ can be estimated using the least-squares method.)
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Silverbox Data Example: Semi-Physical Models

A linear model with nonlinear
regressors can be estimated by
selecting a NARX model, turning off
the nonlinear part and selecting Edit
regressors
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Silverbox Data Example: Semi-Physical Models. . .

Custom regressors can then be
added. . .
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Silverbox Data Example: Semi-Physical Models. . .

. . . in a straightforward way
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Silverbox Data Example: Semi-Physical Models. . .

In this case, the result is rather good
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Local Models (Category 4)
A local model is obtained by approximating the output at a point ϕ∗ as a
weighted average of the available output observations:

ŷ = ĝ(ϕ∗) =

N∑
k=1

wky(k)

Here, wk are normalized (sum = 1) weights.
• The nearest-neighbor model is one (extreme) example
• It is often useful to include more averaging by using weights on the form

wk(ϕ
∗, ϕ(k)) = N · κ(αk‖ϕ∗ − ϕ(k)‖)

where N is a normalization factor and αk are parameters
• Some examples of κ-functions:
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Local Models (Category 4). . .

• 1
αk

acts as a bandwidth:
• Small αk (large bandwidth): Many wk will be nonzero ⇒ small variance,

large bias
• Large αk (small bandwidth): Few wk will be nonzero ⇒ large variance,

small bias

• Local models are used frequently in statistics
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Local Linear Models (Category 5)
A local linear model is a combination of several linear models using a
measureable scheduling variable ρ that defines the operating point of the
system.
• A number of representative values are chosen for ρ: ρk, k = 1, 2, . . . , d

• At each point ρk, an accurate linear model is found, which gives
ŷ(k)(t). For example, these models can be ARX models

ŷ(k)(t|θ(k)) = ϕ(t)T θ(k)

• The total model can be written

ŷ(t) =

d∑
k=1

wk(ρ(t), ρk)ŷ
(k)(t)

• For example, such models are used frequently in aerospace applications
(where velocity and altitude can be used as scheduling variables)
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A General Nonlinear Black-Box Model
One general class of nonlinear black-box models can be written

ŷ(t|θ) = g(ϕ(t), θ) =

d∑
k=1

γkκ(αk(ϕ(t)− βk))

Functions of sigmoid type are common choices of the activation (basis)
function κ:

One example is the logistic function

κ(x) = σ(x) =
1

1 + e−x

Another common choice is the rectified linear unit (ReLU)

κ(x) = x+ = max(x, 0)

These models are building blocks in neural networks
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Neural Networks (Category 6)

• A neural network is obtained by combining many neurons in parallel
(one hidden layer) or in cascade (several hidden layers, deep networks)

• The term hidden refers to the fact that only the weighted sum of the
neuron outputs are available, not their individual outputs

• The result is a nonlinear function from Rn (n inputs) to Rm (m
outputs)

• A continuous function can be approximated arbitrarily well by a neural
network (true also for polynomials and many other model structures)

• Neural networks have a risk for overfitting due to their flexibility. One
remedy for this is early stopping (restricting the maximum number of
iterations in the iterative search for optimal parameters)

• Neural networks with one hidden layer are available in the System
Identification Toolbox in Matlab
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Feedforward Nets

Feedforward nets are obtained if the outputs of the units (neurons) in a
previous hidden layer are processed further in another layer. This can be
repeated many times (deep networks).

Feedforward nets are available in the Deep Learning Toolbox in Matlab and
can be used together with the System Identification Toolbox to facilitate
comparisons with other model types
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Cascade Forward Nets
Cascade forward nets are obtained if the outputs of the units (neurons) in all
earlier hidden layers are processed further in another layer. This can be
repeated many times (deep networks).

Cascade forward nets are available in the Deep Learning Toolbox in Matlab
and can be used together with the System Identification Toolbox to
facilitate comparisons with other model types
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Silverbox Data Example: Neural Networks

Consider the Silverbox dataset again, and let us try some neural network
models:

mNN1ff (feedforward net, one layer with 12 units):

net1ff=feedforwardnet([12]);
NN1ff=neuralnet(net1ff);
mNN1ff=nlarx(edat,[4 4 0],NN1ff);

mNN4ff (feedforward net, 4 layers with 3 units each):

net4ff=feedforwardnet([3,3,3,3]);
NN4ff=neuralnet(net4ff);
mNN4ff=nlarx(edat,[4 4 0],NN4ff);
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Silverbox Data Example: Neural Networks. . .

mNN1cf (cascade forward net, one layer with 12 units):

net1cf=cascadeforwardnet([12]);
NN1cf=neuralnet(net1cf);
mNN1cf=nlarx(edat,[4 4 0],NN1cf);

mNN4cf (cascade forward net, 4 layers with 3 units each):

net4cf=cascadeforwardnet([3,3,3,3]);
NN4cf=neuralnet(net4cf);
mNN4cf=nlarx(edat,[4 4 0],NN4cf);
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Silverbox Data Example: Neural Networks. . .

All four neural network models give
high model fits for validation data,
and the mNN4cf model achieves an
impressive 99.16%



30 / 32

Recurrent Neural Nets (RNNs) (Category 7)

The neural networks described so far have been of NARX type, where the
resulting model is a static function of the regression vector ϕ. A recursive
neural net (RNN) contains internal feedback paths where computed
variables are fed back and used as to define the output prediction in the next
step.
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Recurrent Neural Nets (RNNs) (Category 7). . .

• Feeding back the output results in a nonlinear output-error (NOE)
model structure:

ŷ(t|θ) = g(ŷ(t− 1|θ), . . . , ŷ(t− n|θ), u(t), . . . , u(t−m))

• In general, an RNN has a nonlinear state-space structure
• RNN structures provide more flexibility, but might pose problems due to

instability, poor numerical properties, etc.
• RNNs are available in the Deep Learning Toolbox in Matlab
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Summary

• Nonlinear grey-box models
• Block-oriented models (Hammerstein, Wiener, etc.)
• Semi-physical models
• Local models
• Local linear models
• Neural networks
• Recurrent neural networks
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