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Choice of Model Order and Structure – Model
Validation and Regularization
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Basic Model Validation Principles
• It is not possible to give a general statement about what is a good cost

function value or model fit since these values depend on the noise level
even for a perfect model

• Increasing the model order or using a more flexible model structure
result in a lower value of the cost function (or a higher model fit) if
evaluated on estimation data since more parameters are available to
describe the input-output relation. Problem: overfit (some parameters
are used to describe the particular noise realization in the estimation
dataset and will just give errors when the model is used for a new
dataset)

• There are approaches for distinguishing the relevant model fit from
overfit by modifying the cost function such that it penalizes the use of
many parameters (these methods have names like FPE, AIC, BIC,
MDL)

• However, the best approach is always to evaluate the model fit on a
separate validation dataset: cross-validation (provided that this
dataset is available or can be obtained by splitting the original dataset)
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Validation Approaches

• Cross-validation: Evaluate model fit on validation data
• Compare parametric and non-parametric models in time and frequency

domain
• Look at the auto-correlation of the model residual ε(t) (shows the

quality of the noise model) and the cross-correlation between ε(t) and
u(t− τ) (nonzero values for τ ≥ 0 indicate undermodeling and nonzero
values for τ < 0 indicate the presence of feedback)

• Look at parameter uncertainties (to see if there are unneccessary
parameters)

• Look at the zeros and poles (to see if there are possible pole-zero
cancellations)
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Regularization
• Besides the problem of overfitting, the use of a higher order or more

flexible model structure will usually result in a higher variance of the
model estimate.

• The use of cross-validation will penalize also this, but the result could
be undermodeling (the estimation dataset might contain too little
information to estimate an accurate model of the same complexity as
the true system)

• Regularization can be a useful tool if some prior knowledge about the
system is available. In this case, the following problem is solved:

θ̂N = arg min
θ

VN (θ)

where VN (θ) =
1

N

N∑
t=1

l(ε(t, θ)) + hN (θ)

Here, the function hN (θ) is selected based on different assumptions
about the properties of the true system. For example, the smoothness
properties of the true impulse response can be expressed using
particular functions, known as kernels, and several options are available.
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Some Regularization Kernels

Some common regularization kernels:
• TC: Tuned and correlated kernel
• SE: Squared exponential kernel
• SS: Stable spline kernel
• HF: High frequency stable spline kernel
• DI: Diagonal kernel
• DC: Diagonal and correlated kernel

(The detailed descriptions are beyond the scope of this course, but the
practical advice is to simply try several of them)
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Matlab Regularization Example

Consider a dataset with a
narrow-banded input signal (which
provides less information about the
system than for example a white-noise
input)
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Matlab Regularization Example. . .

We will estimate FIR models with 50
parameters
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Matlab Regularization Example. . .

The LS estimate (green) is far from
the true impulse response (blue)
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Matlab Regularization Example. . .

Let us try to use regularization
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Matlab Regularization Example. . .

The regularized FIR estimates with
DC (red) and TC (cyan) kernels are
very similar to the true impulse
response (blue)
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Statistical Properties of PEM Model
Estimates
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Bias and Variance

Two types of errors in a model:
• Bias errors: Systematic errors, for example due to an unsuitable model

structure or feedback effects.
• Variance errors: Random model errors due to the effects of noise. Can

typically be reduced by using more data for the estimation.
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Convergence and Bias

Key result 1:

θ̂N → θ∗ = arg min
θ

V̄ (θ) w.p.1 as N →∞

where V̄ (θ) = E(ε2(t, θ)).

Key result 2 (linear system and linear model with fixed noise model H∗):

θ̂N → θ∗ = arg min
θ

∫ π

−π
|G0(eiω)−G(eiω, θ)|2 Φu(ω)

|H∗(eiω)|2
dω w.p.1 as N →∞

These results can be used to analyze the convergence and bias properties of
the PEM parameter estimates
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Variance

Key result 3 (unbiased estimator where the residual for θ = θ0 is white
noise with variance λ):

PN = E((θ̂ − θ0)(θ̂ − θ0)T ) ≈ 1

N
λR̄−1

where

R̄ = E(ψ(t, θ0)ψT (t, θ0))

ψ(t, θ) =
d

dθ
ŷ(t|θ)

This result can be used to estimate and analyze the variance of the PEM
parameter estimates.
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Summary

• Overfit
• Cross-validation
• Validation approaches
• Regularization
• Three key results about the convergence, bias and variance of

prediction-error method (PEM) parameter estimates
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