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Parametric Identification
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Two Types of Parameterized Models

A model that depends on a parameter vector θ (of fixed size) is referred to
as a parameterized model. It is common to distinguish two types of
parameterized models:
• Grey-box models: The model structure is derived using first-principles

and the parameters have often a physical meaning (or are functions of
some physical quantities). However, some of the parameters are
unknown and have to be estimated from data.

• Black-box models: The model structure is generic and can be applied
in many domains and settings. The parameters have no physical
interpretation and are estimated from data such that the generic model
can give an as accurate description as possible of a particular system.
The choice of model structure is done based on data.

N.B. Sometimes people use the term white-box models for first-principles
models without unknown parameters. It is also possible to talk about models
having different shades of grey when the amount of physical insight differs.
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Parameterized Transfer-Function Models

A generic parameterized linear transfer-function model:

y(t) = G(q, θ)u(t) +H(q, θ)e(t),

• θ: parameter vector
• u(t): input signal to the system
• y(t): output signal from the system
• e(t): white noise signal
• We will here assume that the sampling time is T = 1
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Rational Transfer Function Model Structures
Rational transfer function models

y(t) =
B(q)

A(q)F (q)
u(t) +

C(q)

A(q)D(q)
e(t)

can be defined using the five polynomials

A(q) = 1 + a1q
−1 + . . .+ anaq

−na

B(q) = bnk
q−nk + bnk+1q

−nk−1 + . . .+ bnk+nb−1q
−nk−nb+1

C(q) = 1 + c1q
−1 + . . .+ cnc

q−nc

D(q) = 1 + d1q
−1 + . . .+ dnd

q−nd

F (q) = 1 + f1q
−1 + . . .+ fnf

q−nf

N.B.:
• Despite the notation/terminology, these functions are polynomials of
q−1 (and rational functions of q).

• The parameters na, nb, nc, nd and nf denote the number of
parameters in each polynomial.

• The parameter nk denotes the model delay.
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Rational Transfer Function Model Structures. . .

Special cases for particular subsets of polynomials used:
• FIR: B(q) (results in a linear regression ŷ(t|θ) = ϕ(t)T θ)
• ARX: A(q), B(q) (results in a linear regression ŷ(t|θ) = ϕ(t)T θ)
• ARMAX: A(q), B(q), C(q)

• OE: B(q), F (q)

• BJ: B(q), C(q), D(q), F (q)

Here, ϕ(t) contains past and present input components and (in the ARX
case) past output components and θ contains polynomial coefficients.
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Prediction Errors

For a particular choice of predictor model and parameter vector θ∗, the
prediction error

ε(t, θ∗) = y(t)− ŷ(t|θ∗)

describes the difference between the measured output and the output
predicted (as well as possible) using the particular model obtained with
θ = θ∗.
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A Key Idea: Minimizing the Prediction Error
One approach to parameter estimation: Select θ such that (some measure
of) the size of the prediction errors is minimized (underlying idea: the true
system should give the best prediction of the output)

The prediction-error method (PEM):

θ̂N = arg min
θ

VN (θ)

where VN (θ) =
1

N

N∑
t=1

l(ε(t, θ))

A common choice when y(t) is scalar:

VN (θ) =
1

N

N∑
t=1

ε(t, θ)2

(For this choice, the PEM estimator coincides with the maximum-likelihood
(ML) estimator when e(t) is normally distributed.)



8 / 31

A Family of Minimization Approaches

In most cases, the minimization problem in PEM has to be solved in an
iterative way using numerical optimization methods (exceptions: ARX and
FIR models with quadratic cost function).

A family of minimization approaches:

θ̂
(i+1)
N = θ̂

(i)
N − µ

(i)
N (R

(i)
N )−1V ′N (θ̂

(i)
N )

Here, µ(i)
N is a step size and R(i)

N is a matrix that can be chosen in different
ways. Setting this matrix to the Hessian (R(i)

N = V ′′N (θ̂
(i)
N )) results in a

Newton method. Other popular choices result in the Gauss-Newton method
(approximate the Hessian using the gradient) or the Levenberg-Marquardt
method.



9 / 31

Model Fit

The model fit Mf is a common measure of model quality:

Mf = 100

(
1− ‖Ym − Ŷ ‖2
‖Ym − Ȳm‖2

)

where Ym and Ŷ are vectors containing N output measurements and
predictions, respectively, and where Ȳm is a vector with the mean of Ym
repeated N times.
• Mf = 100%: perfect model
• Mf = 0%: poor model, similar to just taking the mean of the output
• Mf < 0%: very poor model

The model fit should primarily be computed for a separate validation dataset
that was not used for model estimation.
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Matlab Example
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Matlab Example

Start the graphical user interface to
the System Identification Toolbox in
Matlab with the command
systemIdentification
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Matlab Example. . .

Import data from workspace
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Matlab Example. . .

Preprocess data. The quick start
option removes means and splits the
data into estimation and validation
data.
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Matlab Example. . .

Result of quick start preprocessing
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Matlab Example. . .

Look at the data. No remaining
trends or strange outliers here.
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Matlab Example. . .

Estimate nonparametric spectral
models
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Matlab Example. . .

Try SPA and ETFE with different
frequency resolutions (window widths)
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Matlab Example. . .

The estimated models end up to the
right
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Matlab Example. . .

Look at the estimated frequency
responses. There seems to be a clear
resonance peak at ω = 1.
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Matlab Example. . .

Estimate rational transfer-function
models (here called polynomial
models)
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Matlab Example. . .

ARX and the order selection option is
a good starting point
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Matlab Example. . .

Many ARX models are estimated and
compared. Select one right after the
biggest drop in unexplained output
variance. Here: ARX212.
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Matlab Example. . .

Look at the model output. The model
has picked up part of the dynamics
but it might be possible to find a
better one. Let us try some other
model structures (OE, ARMAX, BJ,
etc.) and model orders.
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Matlab Example. . .

After some testing, an OE331 model
that gives a high model fit is found
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Matlab Example. . .

The parametric models have
frequency responses that are similar to
the nonparametric ones
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Matlab Example. . .

The model residuals show how white
ε(t) is for each model and if there is
correlation between ε(t) and u(t− τ).
Here, the OE model is clearly better
than the ARX model.
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Matlab Example. . .

Right-clicking on a model gives details
about the parameter values and how
the model was obtained. The present
option gives more details in Matlab’s
workspace.



28 / 31

Matlab Example. . .

In particular, the workspace information contains estimated standard
deviations for the parameters, which can be used to find unneccessary
parameters (the standard deviation should ideally be small compared to the
parameter value). This seems OK here.

arx212 =
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)
A(z)= 1 - 1.078 (+/- 0.006591) z^-1 + 0.9565 (+/- 0.006448) z^-2
B(z)= 0.7663 (+/- 0.01351) z^-2
Name: arx212 Sample time: 1 seconds
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Matlab Example. . .

A zeros and poles plot can be used to
find possible pole-zero cancellations.
No obvious ones in this case.
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Matlab Example. . .

In this case, the estimated OE331 model seems like a good choice.

oe331 =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)
B(z)= 0.1205 (+/- 0.006321) z^-1 + 0.382 (+/- 0.009364) z^-2

+ 0.06379 (+/- 0.01485) z^-3
F(z)= 1 - 1.449 (+/- 0.01355) z^-1 + 1.386 (+/- 0.01449) z^-2

- 0.3721 (+/- 0.01326) z^-3

Name: oe331
Sample time: 1 seconds
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Summary

Parametric Identification
• Parameterized models
• Rational transfer-function model structures: FIR, ARX, ARMAX, OE,

BJ
• Predictions of the output
• The prediction-error method
• Example using the GUI of the System Identification Toolbox in Matlab
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