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Sampling and Discrete-Time Models

LINKOPING
II.“ UNIVERSITY



2/30

Motivation

Physical modeling might not be enough to obtain a useful model:
® Some model parameters might be unknown
® Some physical mechanisms might be unknown

® The system might be too complex (to finish the modeling in reasonable
time and with limited resources)

One convenient alternative: System identification (data-driven modeling)

® Key idea: Measure the input and output signals and fit a model to data
such that it explains the input-output relation well

e Key aspect: The signals are measured at discrete time instances
(sampling) = Natural to use discrete-time models
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Sampling

Sampling: Information about a signal
is collected at discrete time instances
ti. (the sampling times)

Uniform sampling: tx = kT
® Sampling time: T

e Sampling frequency: f, = &

T
® Sampling angular frequency:
_ 27
Ws =T

3/30

Continuous time:
y(t) = sin(wt)
Discrete time:

y(tr) = sin(wtg)
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Aliasing
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Sampling Theory

How should the sampling frequency be chosen to avoid aliasing?

Sampling Theorem: A signal that does not contain any sig-
nal components above the angular frequency wg can be recon-
structed exactly from sampled data if the sampling frequency
ws satisfy the inequality wo < 5.

The frequency wy = %* is known as the Nyquist frequency.
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Sampling Theory. ..

Poisson’s summation formula gives a relation between the Fourier transform
W (iw) of a continuous-time signal w(¢) and the discrete Fourier transform
W) (T of the sampled signal w(kT):

W(T)( sz Z W w+rws))
r=—00
Observations:
o W) (eT) is periodic with period w,
® |t is enough to consider the interval —wy <w < wy

® Frequency components in W (iw) outside this interval are
misinterpreted (aliasing)
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Sampling in Practice
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In practice, there could always be signal components above the Nyquist
frequency (e.g., measurement noise) that could result in aliasing. Hence, it is
standard practice to low-pass filter the continuous-time signal (with an
anti-aliasing filter) before the sampling.

y(t)

—>

LP-filter

y(t)

Sampling

9(kTs)

—

(This filter eliminates signal components above wy but leaves slow signal

components unchanged.)
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State-Space Models in Discrete Time

A discrete-time state-space model:

T(tey1) = fa(te), u(te)), k=0,1,2,...
y(tr) = h(z(ty), ulty))

where x are states, u inputs and y outputs (all vectors)
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Sampling of Linear State-Space Model

Sampling of a model means that a discrete-time model is obtained from a
continuous-time one.

Linear continuous-time state-space model:

{‘f At Bu L G(s) = O(sT — A)1B)

y =Cz

Assume that the input is piecewise constant, i.e. u(t) = u(kT),
kT <t < kT + T. Solution:

t
z(t) = eA0) g (tg) +/ A7) Bu(r) dr

to

LINKOPING
II.“ UNIVERSITY



10/ 30

Sampling of Linear State-Space Model. ..

Result:
(kT +T) = Fxz(kT)+ Gu(kT)
y(kT) = Hx(kT)

where

T
F = AT, G:/ eBdoc and H=C
0

(This is an exact discrete-time description of the continuous-time model at
the sampling times.)

eAT can be calculated as
eM =LY (sT - A1)

N.B. Other approaches (e.g., the standard Euler method) can be used if the
model is nonlinear or the input is not zero-order hold
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Discrete-Time to Continuous-Time?

Reversed problem: Find A such that eA” = F. Then, B can be calculated

as
-1

T
B= (/ eAUdcf) G
0

e AT = F might lack solution
AT

Complications:

e ¢4 = F might have several solutions
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Solution

A discrete-time state-space model

(kT +T) = Fz(kT) + Gu(kT)
y(kT) = Hx(kT)

is its own solution algorithm:

z(kT) = Fx(kT —T) + Gu(kT — T)
= F(Fa(kT — 2T) + Gu(kT — 2T)) + Gu(kT — T)

k—1
= FFRp(keT) + Y FE=DGu(IT)
l=ko
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Z Transform

The discrete-time counterpart to the Laplace transform is called the z

transform:

Y(z) =

Z{y(kT)}

Zy (kT)z

(y(kT) =0 for k < 0)
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Z Transform. ..

Some properties:

Z{ay(kT) + bv(kT)} = aY (2) + bV (2)
Z{y(kT = T)} = 27'Y (2) + y(-T)
Z{y(kT +T)} = 2Y (2) — zy(0)
k
Z{> " y(kT —mT)v(mT)} =Y (2)V (2)

m=0
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Transfer function

Using the shift operator, qx(kT) = (kT + T), we can write

z(kT +T) = Fx(kT) + Gu(kT)
y(kT) = Hx(kT)

as

qr(kT) = Fa(kT) + Gu(kT)
y(kT) = Hx(kT)

This gives
y(kT) = H(ql — F)"'Gu(kT)

The transfer function Gr(z) = H(2I — F)7'G (med z € C) gives an
input-output description of the model.
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Transfer Functions. . .

A general rational transfer function (without direct term)

B(q) big" ..+ by

Gr(q) — _
r(4) Alq) "+ a " +...+a,

corresponds to a difference equation y(kT) = %u(k‘T), i.e.

y(k+n)T) + ...+ any(kT) = byu((k +n — DT) + ... + byu(kT)

o0
Alternative notation: Gr(q) = Z gr(m)q~™, where gr(m) is the impulse
m=1

response.
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Poles
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Continuous-time minimal (controllable and observable) state-space
model:
& = Az + Bu

y =Cx
Poles = eigenvalues \; to the matrix A

The corresponding sampled model has (if it is minimal) poles that are

equal to the eigenvalues €T to the matrix F' = e47.

The stability region for a discrete-time model is the interior of the unit
circle
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Poles: Observations

Assume that \ = p +iw = e* = et (cos(wT) + isin(wT))
T small = poles close to z =1

p< 0= |er| < 1 (stability is preserved)
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Zeros

No simple relation between the zeros of the continuous-time and
discrete-time models

The sampled model can have more zeros than the continuous-time
model
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Frequency Response

Frequency response in continuous time: G (iw)
Frequency response in discrete time: G (e*7)

Frequency responses for a continuous-time model and the corresponding
sampled models for T'=2s, T =1s, T'= 0.5s, T' = 0.1s:

=
oc

Amplitude
=
O‘

"
Ow

107 10° 10 10

Phase (degrees)

N 10° 10' 10
Frequency (rad/s)
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Signals and Disturbances
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Modeling of Signals

® Generic signal models: The signal is described as the output of a
model (e.g, state-space or transfer function models) that has a standard
signal (e.g., impulse, multisine, white noise) as input

® First-principles modeling (physical modeling) can be used to obtain
signal models provided that he underlying mechanisms are known

® Data-driven modeling can be used to obtain signal models if data are
available

® Stochastic descriptions: expected value, covariance function, spectral
density

® Spectral density: Signal energy or power as a function of frequency

® A disturbance is an input signal to a system that we cannot choose or
influence ourselves. This class of signals is particularly interesting to
model.
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Example: A Common Class of Signal Models

One common example: Model w(t) as the output of a linear model with a
white noise process (all signal components are independent) as input:

D(Quw(kT) = C(q)e(kT) < w(kT)= G(q)e(kT), whereG(q)= o)

D(q)
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Stochastic Modeling

A stochastic process is a sequence of random variables

w(tl), w(tg), w(tg),

® Assume uniform sampling t;, = kT
® The mean value function: m,,(t) = E(w(¢tT))
® The covariance function:

Ry (t,s) = Cov(w(t), w(s)) = E((w(tT) — muy (1)) (w(sT) = mu(s)))

For a stationary process:
® The mean value does not depend on ¢
® R,(t,s) depends only on t — s and can be replaced with

Ry (1) = E((w(tT) — muw)(w((t = 7)T) = muw))
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Example

Realizations of two stochastic processes and their covariance functions:

4 4
= 2 o 2
® -2 5
—4
50 100 150 200 50 100 150 200
4
Oh Of
3 0
~ 2 Q? -2
—4
—-20-10 0 10 20

—20-10 0 10 20
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Spectral Density

The spectral density (sometimes called spectrum) ®,,(w) of a signal can
be defined as:

Oy(w) =T Y Ry(r)e ™k
k=—o0

Similar definitions are available also for deterministic signals (continuous
time or discrete time, finite energy or infinite energy), see Appendix D.
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Example
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Two covariance functions and the corresponding spectral densities:
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Cross-Covariance and Cross-Spectral Density

Similarities and dependencies between signals can be described using the
cross-covariance function

Ryu(1) = E((y(t) = my)(u(t = 7) —mu))
and the cross-spectral density

Q,,(w)=T Z Ry (1)e™ kT

k=—o0

Uncorrelated signals < Ry, = ®,, =0
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Spectral Densities and Linear Filtering

Consider a linear model
y=Gu+w

where u and w are uncorrelated. Then

&
<
E

I

|G (D)@ (w) + Pu(w)
G(e™“T)®, (w)

&

<

IS

£
I

wT

(Same expressions in continuous time if e"* is replaced with iw)
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Summary

Sampling and Discrete-Time Models
® Sampling
® Aliasing and the sampling theorem
® Sampling of a linear state-space model

® Discrete-time linear models (z transform, transfer function, impulse
response, difference equation, poles, zeros, frequency response)

Signals and Disturbances:
® Signal (and in particular disturbance) models
e MA, AR, ARMA models

Stochastic processes

Covariance functions

Spectral densities
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