Modeling and Learning for Dynamical Systems Lecture 4

Martin Enqvist

Sampling and Discrete-Time Models

Motivation

Physical modeling might not be enough to obtain a useful model:

- Some model parameters might be unknown
- Some physical mechanisms might be unknown
- The system might be too complex (to finish the modeling in reasonable time and with limited resources)

One convenient alternative: System identification (data-driven modeling)

- Key idea: Measure the input and output signals and fit a model to data such that it explains the input-output relation well
- Key aspect: The signals are measured at discrete time instances (sampling) ⇒ Natural to use discrete-time models

Sampling

Sampling: Information about a signal is collected at discrete time instances t_k (the sampling times)

Uniform sampling: $t_k = kT$

- Sampling time: T
- Sampling frequency: $f_s = \frac{1}{T}$
- Sampling angular frequency: $\omega_s = \frac{2\pi}{T}$

Continuous time:

$$y(t) = \sin(\omega t)$$

Discrete time:

 $y(t_k) = \sin(\omega t_k)$

Aliasing

How should the sampling frequency be chosen to avoid aliasing?

Sampling Theorem: A signal that does not contain any signal components above the angular frequency ω_0 can be reconstructed exactly from sampled data if the sampling frequency ω_s satisfy the inequality $\omega_0 \leq \frac{\omega_s}{2}$.

The frequency $\omega_N = \frac{\omega_s}{2}$ is known as **the Nyquist frequency**.

Sampling Theory...

Poisson's summation formula gives a relation between the Fourier transform $W(i\omega)$ of a continuous-time signal w(t) and the discrete Fourier transform $W^{(T)}(e^{i\omega T})$ of the sampled signal w(kT):

$$W^{(T)}(e^{i\omega T}) = \sum_{r=-\infty}^{\infty} W(i(\omega + r\omega_s))$$

Observations:

- $W^{(T)}(e^{i\omega T})$ is periodic with period ω_s
- It is enough to consider the interval $-\omega_N \leq \omega \leq \omega_N$
- Frequency components in $W(i\omega)$ outside this interval are misinterpreted (aliasing)

Sampling in Practice

In practice, there could always be signal components above the Nyquist frequency (e.g., measurement noise) that could result in aliasing. Hence, it is standard practice to low-pass filter the continuous-time signal (with an anti-aliasing filter) before the sampling.

$$y(t)$$
 LP-filter $\tilde{y}(t)$ Sampling $\tilde{y}(kT_S)$

(This filter eliminates signal components above ω_N but leaves slow signal components unchanged.)

A discrete-time state-space model:

$$x(t_{k+1}) = f(x(t_k), u(t_k)), \quad k = 0, 1, 2, \dots$$
$$y(t_k) = h(x(t_k), u(t_k))$$

where x are states, u inputs and y outputs (all vectors)

Sampling of Linear State-Space Model

Sampling of a model means that a discrete-time model is obtained from a continuous-time one.

Linear continuous-time state-space model:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad (\Leftrightarrow \ G(s) = C(sI - A)^{-1}B)$$

Assume that the input is **piecewise constant**, i.e. u(t) = u(kT), $kT \le t < kT + T$. Solution:

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau) \, d\tau$$

Sampling of Linear State-Space Model...

Result:

$$\begin{cases} x(kT+T) &= Fx(kT) + Gu(kT) \\ y(kT) &= Hx(kT) \end{cases}$$

where

$$F=e^{AT}, \quad G=\int_0^T e^{A\sigma}B\,d\sigma \quad \text{and} \quad H=C$$

(This is an exact discrete-time description of the continuous-time model at the sampling times.)

 e^{AT} can be calculated as

$$e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

N.B. Other approaches (e.g., the standard Euler method) can be used if the model is nonlinear or the input is not zero-order hold

Discrete-Time to Continuous-Time?

Reversed problem: Find A such that $e^{AT} = F$. Then, B can be calculated as

$$B = \left(\int_0^T e^{A\sigma} \, d\sigma\right)^{-1} G$$

Complications:

- $e^{AT} = F$ might lack solution
- $e^{AT} = F$ might have several solutions

Solution

A discrete-time state-space model

$$\begin{aligned} x(kT+T) &= Fx(kT) + Gu(kT) \\ y(kT) &= Hx(kT) \end{aligned}$$

is its own solution algorithm:

$$\begin{aligned} x(kT) &= Fx(kT - T) + Gu(kT - T) \\ &= F(Fx(kT - 2T) + Gu(kT - 2T)) + Gu(kT - T) \\ &= \dots \\ &= F^{(k-k_0)}x(k_0T) + \sum_{l=k_0}^{k-1} F^{(k-l-1)}Gu(lT) \end{aligned}$$

Z Transform

The discrete-time counterpart to the Laplace transform is called the ${\bf z}$ transform:

$$Y(z) = \mathcal{Z}\{y(kT)\}(z) = \sum_{k=0}^{\infty} y(kT)z^{-k}$$

(y(kT) = 0 for k < 0)

Z Transform...

Some properties:

$$\begin{aligned} \mathcal{Z}\{ay(kT) + bv(kT)\} &= aY(z) + bV(z) \\ \mathcal{Z}\{y(kT - T)\} &= z^{-1}Y(z) + y(-T) \\ \mathcal{Z}\{y(kT + T)\} &= zY(z) - zy(0) \end{aligned}$$
$$\begin{aligned} \mathcal{Z}\{\sum_{m=0}^{k} y(kT - mT)v(mT)\} &= Y(z)V(z) \end{aligned}$$

Transfer function

Using the shift operator, qx(kT) = x(kT+T), we can write

$$\begin{aligned} x(kT+T) &= Fx(kT) + Gu(kT) \\ y(kT) &= Hx(kT) \end{aligned}$$

as

$$qx(kT) = Fx(kT) + Gu(kT)$$
$$y(kT) = Hx(kT)$$

This gives

$$y(kT) = H(qI - F)^{-1}Gu(kT)$$

The transfer function $G_T(z) = H(zI - F)^{-1}G \pmod{z \in \mathbb{C}}$ gives an input-output description of the model.

Transfer Functions...

A general rational transfer function (without direct term)

$$G_T(q) = \frac{B(q)}{A(q)} = \frac{b_1 q^{n-1} + \ldots + b_n}{q^n + a_1 q^{n-1} + \ldots + a_n}$$

corresponds to a difference equation $y(kT) = \frac{B(q)}{A(q)}u(kT)$, i.e.

$$y((k+n)T) + \ldots + a_n y(kT) = b_1 u((k+n-1)T) + \ldots + b_n u(kT)$$

Alternative notation: $G_T(q) = \sum_{m=1}^{\infty} g_T(m) q^{-m}$, where $g_T(m)$ is the **impulse** m=1

• Continuous-time minimal (controllable and observable) state-space model:

$$\begin{cases} \dot{x} &= Ax + Bu \\ y &= Cx \end{cases}$$

Poles = eigenvalues λ_i to the matrix A

- The corresponding sampled model has (if it is minimal) poles that are equal to the eigenvalues $e^{\lambda_i T}$ to the matrix $F = e^{AT}$.
- The **stability region** for a discrete-time model is the interior of the unit circle

Poles: Observations

Assume that $\lambda = \mu + i\omega \Rightarrow e^{\lambda T} = e^{\mu T} (\cos(\omega T) + i \sin(\omega T))$ T small \Rightarrow poles close to z = 1 $\mu < 0 \Rightarrow |e^{\lambda T}| < 1$ (stability is preserved)

- No simple relation between the zeros of the continuous-time and discrete-time models
- The sampled model can have more zeros than the continuous-time model

Frequency Response

Frequency response in continuous time: $G(i\omega)$ Frequency response in discrete time: $G_T(e^{i\omega T})$

Frequency responses for a continuous-time model and the corresponding sampled models for T = 2s, T = 1s, T = 0.5s, T = 0.1s:

Signals and Disturbances

Modeling of Signals

- Generic **signal models**: The signal is described as the output of a model (e.g, state-space or transfer function models) that has a standard signal (e.g., impulse, multisine, white noise) as input
- First-principles modeling (physical modeling) can be used to obtain signal models provided that he underlying mechanisms are known
- Data-driven modeling can be used to obtain signal models if data are available
- Stochastic descriptions: expected value, covariance function, spectral density
- Spectral density: Signal energy or power as a function of frequency
- A disturbance is an input signal to a system that we cannot choose or influence ourselves. This class of signals is particularly interesting to model.

Example: A Common Class of Signal Models

One common example: Model w(t) as the output of a linear model with a white noise process (all signal components are independent) as input:

$$D(q)w(kT) = C(q)e(kT) \quad \Leftrightarrow \quad w(kT) = G(q)e(kT), \quad \text{where } G(q) = \frac{C(q)}{D(q)}$$

(C(q) and D(q) are polynomials)

- G(q) = C(q): Moving average (MA) model (or process if referring to w)
- $G(q) = \frac{1}{D(q)}$: Auto-regressive (AR) model (process)
- $G(q) = \frac{C(q)}{D(q)}$: Auto-regressive moving average (ARMA) model (process)

Stochastic Modeling

A stochastic process is a sequence of random variables

$$w(t_1), w(t_2), w(t_3), \ldots$$

- Assume uniform sampling $t_k = kT$
- The mean value function: $m_w(t) = E(w(tT))$
- The covariance function:

 $R_w(t,s) = \operatorname{Cov}(w(t), w(s)) = \operatorname{E}((w(tT) - m_w(t))(w(sT) - m_w(s)))$

For a stationary process:

- The mean value does not depend on \boldsymbol{t}
- $R_w(t,s)$ depends only on t-s and can be replaced with

$$R_w(\tau) = \mathcal{E}((w(tT) - m_w)(w((t-\tau)T) - m_w))$$

Example

Realizations of two stochastic processes and their covariance functions:

The **spectral density** (sometimes called spectrum) $\Phi_w(\omega)$ of a signal can be defined as:

$$\Phi_w(\omega) = T \sum_{k=-\infty}^{\infty} R_w(\tau) e^{-i\omega kT}$$

Similar definitions are available also for deterministic signals (continuous time or discrete time, finite energy or infinite energy), see Appendix D.

Example

Two covariance functions and the corresponding spectral densities:

Cross-Covariance and Cross-Spectral Density

Similarities and dependencies between signals can be described using the cross-covariance function $% \left({{{\left[{{{\rm{s}}} \right]}_{{\rm{cov}}}}_{{\rm{cov}}}} \right)$

$$R_{yu}(\tau) = \mathcal{E}((y(t) - m_y)(u(t - \tau) - m_u))$$

and the cross-spectral density

$$\Phi_{yu}(\omega) = T \sum_{k=-\infty}^{\infty} R_{yu}(\tau) e^{-i\omega kT}$$

Uncorrelated signals $\Leftrightarrow R_{yu} = \Phi_{yu} = 0$

Spectral Densities and Linear Filtering

Consider a linear model

$$y = Gu + w$$

where \boldsymbol{u} and \boldsymbol{w} are uncorrelated. Then

$$\Phi_y(\omega) = |G(e^{i\omega T})|^2 \Phi_u(\omega) + \Phi_w(\omega)$$

$$\Phi_{yu}(\omega) = G(e^{i\omega T}) \Phi_u(\omega)$$

(Same expressions in continuous time if $e^{i\omega T}$ is replaced with $i\omega$)

Summary

Sampling and Discrete-Time Models

- Sampling
- Aliasing and the sampling theorem
- Sampling of a linear state-space model
- Discrete-time linear models (z transform, transfer function, impulse response, difference equation, poles, zeros, frequency response)

Signals and Disturbances:

- Signal (and in particular disturbance) models
- MA, AR, ARMA models
- Stochastic processes
- Covariance functions
- Spectral densities

www.liu.se

