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Sampling and Discrete-Time Models
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Motivation

Physical modeling might not be enough to obtain a useful model:
• Some model parameters might be unknown
• Some physical mechanisms might be unknown
• The system might be too complex (to finish the modeling in reasonable

time and with limited resources)
One convenient alternative: System identification (data-driven modeling)
• Key idea: Measure the input and output signals and fit a model to data

such that it explains the input-output relation well
• Key aspect: The signals are measured at discrete time instances

(sampling) ⇒ Natural to use discrete-time models



3 / 30

Sampling

Sampling: Information about a signal
is collected at discrete time instances
tk (the sampling times)

Uniform sampling: tk = kT

• Sampling time: T
• Sampling frequency: fs = 1

T

• Sampling angular frequency:
ωs = 2π

T

Continuous time:

y(t) = sin(ωt)

Discrete time:

y(tk) = sin(ωtk)
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Aliasing
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There is a risk for misinterpretation of the sampled signal (aliasing)
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Sampling Theory

How should the sampling frequency be chosen to avoid aliasing?

Sampling Theorem: A signal that does not contain any sig-
nal components above the angular frequency ω0 can be recon-
structed exactly from sampled data if the sampling frequency
ωs satisfy the inequality ω0 ≤ ωs

2 .

The frequency ωN = ωs

2 is known as the Nyquist frequency.
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Sampling Theory. . .

Poisson’s summation formula gives a relation between the Fourier transform
W (iω) of a continuous-time signal w(t) and the discrete Fourier transform
W (T )(eiωT ) of the sampled signal w(kT ):

W (T )(eiωT ) =

∞∑
r=−∞

W (i(ω + rωs))

Observations:
• W (T )(eiωT ) is periodic with period ωs
• It is enough to consider the interval −ωN ≤ ω ≤ ωN
• Frequency components in W (iω) outside this interval are

misinterpreted (aliasing)
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Sampling in Practice

In practice, there could always be signal components above the Nyquist
frequency (e.g., measurement noise) that could result in aliasing. Hence, it is
standard practice to low-pass filter the continuous-time signal (with an
anti-aliasing filter) before the sampling.

LP-filter Sampling
y(t) ỹ(t) ỹ(kTS)

(This filter eliminates signal components above ωN but leaves slow signal
components unchanged.)
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State-Space Models in Discrete Time

A discrete-time state-space model:

x(tk+1) = f(x(tk), u(tk)), k = 0, 1, 2, . . .

y(tk) = h(x(tk), u(tk))

where x are states, u inputs and y outputs (all vectors)
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Sampling of Linear State-Space Model

Sampling of a model means that a discrete-time model is obtained from a
continuous-time one.

Linear continuous-time state-space model:{
ẋ = Ax+Bu

y = Cx
(⇔ G(s) = C(sI −A)−1B)

Assume that the input is piecewise constant, i.e. u(t) = u(kT ),
kT ≤ t < kT + T . Solution:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ) dτ
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Sampling of Linear State-Space Model. . .

Result: {
x(kT + T ) = Fx(kT ) +Gu(kT )

y(kT ) = Hx(kT )

where

F = eAT , G =

∫ T

0

eAσB dσ and H = C

(This is an exact discrete-time description of the continuous-time model at
the sampling times.)

eAT can be calculated as

eAt = L−1{(sI −A)−1}

N.B. Other approaches (e.g., the standard Euler method) can be used if the
model is nonlinear or the input is not zero-order hold
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Discrete-Time to Continuous-Time?

Reversed problem: Find A such that eAT = F . Then, B can be calculated
as

B =

(∫ T

0

eAσ dσ

)−1
G

Complications:
• eAT = F might lack solution
• eAT = F might have several solutions
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Solution

A discrete-time state-space model

x(kT + T ) = Fx(kT ) +Gu(kT )

y(kT ) = Hx(kT )

is its own solution algorithm:

x(kT ) = Fx(kT − T ) +Gu(kT − T )

= F (Fx(kT − 2T ) +Gu(kT − 2T )) +Gu(kT − T )

= . . .

= F (k−k0)x(k0T ) +

k−1∑
l=k0

F (k−l−1)Gu(lT )
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Z Transform

The discrete-time counterpart to the Laplace transform is called the z
transform:

Y (z) = Z{y(kT )}(z) =

∞∑
k=0

y(kT )z−k

(y(kT ) = 0 for k < 0)
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Z Transform. . .

Some properties:

Z{ay(kT ) + bv(kT )} = aY (z) + bV (z)

Z{y(kT − T )} = z−1Y (z) + y(−T )

Z{y(kT + T )} = zY (z)− zy(0)

Z{
k∑

m=0

y(kT −mT )v(mT )} = Y (z)V (z)
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Transfer function

Using the shift operator, qx(kT ) = x(kT + T ), we can write

x(kT + T ) = Fx(kT ) +Gu(kT )

y(kT ) = Hx(kT )

as

qx(kT ) = Fx(kT ) +Gu(kT )

y(kT ) = Hx(kT )

This gives
y(kT ) = H(qI − F )−1Gu(kT )

The transfer function GT (z) = H(zI − F )−1G (med z ∈ C) gives an
input-output description of the model.
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Transfer Functions. . .

A general rational transfer function (without direct term)

GT (q) =
B(q)

A(q)
=

b1q
n−1 + . . .+ bn

qn + a1qn−1 + . . .+ an

corresponds to a difference equation y(kT ) = B(q)
A(q)u(kT ), i.e.

y((k + n)T ) + . . .+ any(kT ) = b1u((k + n− 1)T ) + . . .+ bnu(kT )

Alternative notation: GT (q) =

∞∑
m=1

gT (m)q−m, where gT (m) is the impulse

response.
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Poles

• Continuous-time minimal (controllable and observable) state-space
model: {

ẋ = Ax+Bu

y = Cx

Poles = eigenvalues λi to the matrix A
• The corresponding sampled model has (if it is minimal) poles that are

equal to the eigenvalues eλiT to the matrix F = eAT .
• The stability region for a discrete-time model is the interior of the unit

circle
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Poles: Observations

Assume that λ = µ+ iω ⇒ eλT = eµT (cos(ωT ) + i sin(ωT ))

T small ⇒ poles close to z = 1

µ < 0 ⇒ |eλT | < 1 (stability is preserved)
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Zeros

• No simple relation between the zeros of the continuous-time and
discrete-time models

• The sampled model can have more zeros than the continuous-time
model
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Frequency Response
Frequency response in continuous time: G(iω)
Frequency response in discrete time: GT (eiωT )

Frequency responses for a continuous-time model and the corresponding
sampled models for T = 2s, T = 1s, T = 0.5s, T = 0.1s:
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Signals and Disturbances
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Modeling of Signals

• Generic signal models: The signal is described as the output of a
model (e.g, state-space or transfer function models) that has a standard
signal (e.g., impulse, multisine, white noise) as input

• First-principles modeling (physical modeling) can be used to obtain
signal models provided that he underlying mechanisms are known

• Data-driven modeling can be used to obtain signal models if data are
available

• Stochastic descriptions: expected value, covariance function, spectral
density

• Spectral density: Signal energy or power as a function of frequency
• A disturbance is an input signal to a system that we cannot choose or

influence ourselves. This class of signals is particularly interesting to
model.
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Example: A Common Class of Signal Models

One common example: Model w(t) as the output of a linear model with a
white noise process (all signal components are independent) as input:

D(q)w(kT ) = C(q)e(kT ) ⇔ w(kT ) = G(q)e(kT ), whereG(q) =
C(q)

D(q)

(C(q) and D(q) are polynomials)
• G(q) = C(q): Moving average (MA) model (or process if referring to w)
• G(q) = 1

D(q) : Auto-regressive (AR) model (process)

• G(q) = C(q)
D(q) : Auto-regressive moving average (ARMA) model (process)
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Stochastic Modeling
A stochastic process is a sequence of random variables

w(t1), w(t2), w(t3), . . .

• Assume uniform sampling tk = kT

• The mean value function: mw(t) = E(w(tT ))

• The covariance function:

Rw(t, s) = Cov(w(t), w(s)) = E((w(tT )−mw(t))(w(sT )−mw(s)))

For a stationary process:
• The mean value does not depend on t
• Rw(t, s) depends only on t− s and can be replaced with

Rw(τ) = E((w(tT )−mw)(w((t− τ)T )−mw))
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Example

Realizations of two stochastic processes and their covariance functions:
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Spectral Density

The spectral density (sometimes called spectrum) Φw(ω) of a signal can
be defined as:

Φw(ω) = T

∞∑
k=−∞

Rw(τ)e−iωkT

Similar definitions are available also for deterministic signals (continuous
time or discrete time, finite energy or infinite energy), see Appendix D.
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Example

Two covariance functions and the corresponding spectral densities:
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Cross-Covariance and Cross-Spectral Density

Similarities and dependencies between signals can be described using the
cross-covariance function

Ryu(τ) = E((y(t)−my)(u(t− τ)−mu))

and the cross-spectral density

Φyu(ω) = T

∞∑
k=−∞

Ryu(τ)e−iωkT

Uncorrelated signals ⇔ Ryu = Φyu = 0
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Spectral Densities and Linear Filtering

Consider a linear model
y = Gu+ w

where u and w are uncorrelated. Then

Φy(ω) = |G(eiωT )|2Φu(ω) + Φw(ω)

Φyu(ω) = G(eiωT )Φu(ω)

(Same expressions in continuous time if eiωT is replaced with iω)
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Summary

Sampling and Discrete-Time Models
• Sampling
• Aliasing and the sampling theorem
• Sampling of a linear state-space model
• Discrete-time linear models (z transform, transfer function, impulse

response, difference equation, poles, zeros, frequency response)
Signals and Disturbances:
• Signal (and in particular disturbance) models
• MA, AR, ARMA models
• Stochastic processes
• Covariance functions
• Spectral densities
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