
Modeling and Learning for
Dynamical Systems
Lecture 3

Martin Enqvist



1 / 25

DAE Models



2 / 25

DAE Models

• First-principles modeling often results in Differential Algebraic
Equations (DAEs): A set of equations describing the relation between
some physical variables z, their derivatives ż and input signals u:

F (ż, z, u) = 0

• In general, some components of F contain only undifferentiated
variables (algebraic equations)

• The vector z is called generalized state or internal variables
• Higher order derivatives z̈ can be included in the equation above by

introducing new variables zd = ż such that żd = z̈

• An output equation can also be included:

y = h(z, u)



3 / 25

Example: A Small Nonlinear DAE

A small nonlinear DAE model:

Cż1 − z2 = 0

z1 +R1z2 +R2z
5
2 − u = 0

y = z1



4 / 25

Index
The (differentiation) index of a DAE model

F (ż, z, u) = 0 (A)

is the number of differentiations needed to be able to solve ż from the larger
set of equations obtained in this way, resulting in

ż = φ(z, u, u̇, . . . , u(k))

• If ż can be solved directly from (A): state-space model, index = 0
• Otherwise: Differentiate equation (A)

∂F

∂ż
z̈ +

∂F

∂z
ż +

∂F

∂u
u̇ = 0 (B)

If ż can be solved from (A) and (B): index = 1
• Otherwise: Differentiate again, which gives another equation (C). If ż

can be solved from (A), (B) and (C): index = 2
• Otherwise: . . .

The Implicit Function Theorem can be used to draw conclusions about the
solvability of ż



5 / 25

Example: A Small Nonlinear DAE. . .
A small nonlinear DAE model:

Cż1 − z2 = 0

z1 +R1z2 +R2z
5
2 − u = 0

y = z1

Here, ż1 can be obtained from the first equation:

ż1 =
z2
C

Differentiating the second equation gives:

ż1 +R1ż2 + 5R2z
4
2 ż2 − u̇ = 0 ⇒

ż2 =
u̇− ż1

R1 + 5R2z42
=

u̇− z2/C
R1 + 5R2z42

Hence, this DAE model has index = 1 (since we can determine both
derivatives after one differentiation)



6 / 25

Index. . .
In principle, a solution to a DAE model can be obtained by selecting initial
conditions that satisfy F (ż, z, u) = 0 and then simulate

ż = φ(z, u, u̇, . . . , u(k))

using standard numerical methods for Ordinary Differential Equations
(ODEs). Observation: DAEs are more complicated than ODEs:
• We might lack an explicit expression for φ
• The solution is less smooth than the input signal since it depends also

on derivatives of the input signal (higher order derivatives in the general
case)

• The initial conditions must satisfy all equations (including algebraic
ones)

• The index can be viewed as a measure of how far a DAE is from an
ODE

• In practice, DAEs with index = 1 are relatively easy to solve numerically
whereas DAEs with higher index are more challenging



7 / 25

Linear DAE Models

Linear DAE models can be written

Eż + Fz = Gu

where E and F are square matrices
• If E is invertible:

ż = −E−1Fz + E−1Gu (a normal state-space model)

• Genuine DAE models with nontrivial indices are obtained for singular E
matrices

• Result: The DAE Eż + Fz = Gu is uniquely solvable if sE + F is
invertible for some value of s



8 / 25

Index for Linear DAE Model
1. A linear DAE model where rank(E) = r can be written as[

E1

E2

]
ż +

[
F1

F2

]
z =

[
G1

G2

]
u

where E1 has full rank (r) and the rows of E2 are linear combinations
of the rows of E1

2. Eliminate E2 via row operations[
E1

0

]
ż +

[
F1

F̃2

]
z =

[
G1

G̃2

]
u

3. Differentiate the lower part:[
E1

F̃2

]
ż +

[
F1

0

]
z =

[
G1

0

]
u+

[
0

G̃2

]
u̇

4. If
[
E1

F̃2

]
is invertible: Solve for ż, index = 1

5. Otherwise: Repeat the procedure, index = number of differentiations



9 / 25

Model Transformations

A linear DAE model
Eż + Fz = Gu

can be transformed by a change of variables z = Qw and multiplication with
P from the left (P and Q non-singular matrices). This gives:

PEQẇ + PFQw = PGu

An output equation y = Hz + Ju is transformed to y = HQw + Ju.



10 / 25

Standard Form I

Assume that there exists an s0 that makes s0E + F invertible. The matrices
P and Q can then be chosen to yield the following form[

I 0
0 N

] [
ẇ1

ẇ2

]
+

[
−A 0
0 I

] [
w1

w2

]
=

[
B
B̄

]
u

y =
[
C C̄

] [w1

w2

]
+ Ju

where N is nilpotent, i.e., Nk = 0 for some integer k. The index is equal to
the smallest k for which Nk = 0.
• w1 obeys a normal state-space ODE:

ẇ1 = Aw1 +Bu

• Equation for w2:
Nẇ2 + w2 = B̄u



11 / 25

Standard Form I. . .

Nẇ2 + w2 = B̄u

• If N = 0 (index = 1) then
w2 = B̄u

• If N 6= 0 but N2 = 0 (index = 2) then

w2 = B̄u−NB̄u̇

• In general (index = k):

w2 = B̄u−NB̄u̇+ . . .+ (−N)k−1B̄u(k−1)

(we can solve for ẇ2 by differentiating these equations once, which shows
that the previous index concept is used also here)



12 / 25

Standard Form II

Hence, we have a second standard form:

ẋ = Ax+Bu (x = w1)

y = Cx+Du+D1u̇+ . . .+Dk−1u
(k−1)

where D = J + C̄B̄, D1 = −C̄NB̄, . . . , Dk−1 = C̄(−N)k−1B̄



13 / 25

Object-Oriented Modeling



14 / 25

Modelica

Modelica is a standardized modeling language:
• based on equation descriptions (not necessarily of state-space type)
• facilitates hierarchical modeling using standard components
• object-oriented (inheritance, etc.)
• a standardized and wide-spread language for complex technical systems



15 / 25

A Small Modelica Model

Cż1 − z2 = 0

z1 +R1z2 +R2z
5
2 − u = 0

y = z1

model Circuit
Real z1, z2, u, y;
parameter Real C=1, R1=2, R2=3;

equation
u=10*sin(time);
C*der(z1)-z2=0;
z1+R1*z2+R2*z2^5-u=0;
y=z1;

end Circuit;



16 / 25

DC Motor in Modelica



17 / 25

Connectors

Connectors in Modelica are used to connect submodels:
• A small submodel specifying the interface between component

submodels
• Variables that correspond to each other in two submodels that should

interact are set equal or to sum up to zero depending on type
• The use of connectors is one of the reasons why Modelica models often

are DAE models



18 / 25

Simulation



19 / 25

Simulation of State-Space Models

A model in state-space form:

ẋ(t) = f(x(t), u(t))

Consider a particular input signal u(t) = ū(t) and a particular initial state
x0. The influence of ū can then be represented with a time-dependency of f
(different f):

ẋ(t) = f(t, x(t))

x(0) = x0

Assume that we want a numerical approximation of x at the time instances

0 < t1 < t2 < . . . < tf

i.e. we want values x1, x2, . . . that approximate x(t1), x(t2), . . .



20 / 25

Euler’s Methods

The standard Euler method is based on a simple derivative approximation:

xn+1 − xn
h

≈ ẋ(tn) = f(tn, xn), where h = tn+1 − tn

This gives
xn+1 = xn + hf(tn, xn) (explicit method)

The reversed Euler method is on the other hand based on the
approximation:

xn − xn−1

h
≈ ẋ(tn) = f(tn, xn), where h = tn+1 − tn

which gives

xn = xn−1 + hf(tn, xn) (implicit method)



21 / 25

General k-Step Methods
A general k-step method for numerical simulations of ODEs can be written

xn+1 = G(t, xn−k+1, xn−k+2, . . . , xn, xn+1)

• k previous values are used
• Explicit methods: G does not depend on xn+1

• Implicit methods: G depends on xn+1 ⇒ an equation has to be solved
to get xn+1

Interesting properties:
• Global error En = x(tn)− xn (hard to compute in general, typically

proportional to hp for some p)
• Local error en = x(tn)− zn, where zn = G(t, x(tn−k), . . . , x(tn−1), zn)

(can be computed from the Taylor series expansion, typically
proportional to hp+1)

• Here, p is called the order of accuracy
• Stability: Is often investigated via the scalar test equation ẋ = λx,
x(0) = 1 (check stability of the resulting difference equation)



22 / 25

Methods and Solvers

• Families of numerical methods: Runge-Kutta methods, Adams’s
methods, . . . (these are better than Euler’s methods for simulations)

• Useful idea: variable step length (idea: estimate the local error by
comparing the result of taking two steps of length h and one of length
2h, adjust h to maintain a chosen tolerance without using an
unnecessarily small h)

• Solvers in Matlab (ode45, ode23, ode113, ode78, ode89, ode15s,
ode23s, ode23t, ode23tb, ode15i)

• The different methods and solvers have their advantages and
disadvantages, which are usually described in literature and help texts.
The concepts discussed here should make the choice of solver easier.



23 / 25

Stiff Differential Equations

• For some models, the solutions contain both fast and slow components
with large differences between their time constants. Such models are
called stiff.

• The stability requirement can limit the step length in this case, making
the simulations very slow

• Methods for stiff problems are often implicit since such methods often
have larger stability regions than explicit ones



24 / 25

Simulation of DAE Models

Consider a DAE model F (ż, z, u) = 0. One numerical approach is to
approximate the derivative ż using zn and k earlier z values (a backwards
difference formula, BDF)

ż ≈
k∑

i=0

αizn−i =:
1

h
ρkzn

and to solve the equation

F (
1

h
ρkzn, zn, u(tn)) = 0

recursively. The accuracy depends on the index of the DAE model and
models with higher index than one might require special methods.



25 / 25

Summary
DAE Models:
• General DAE models are frequent when working with first-principles

modeling
• Key property: Index
• Standard forms for linear DAEs

Modelica:
• Standardized object-oriented modeling language
• Equation-based, both at component/object level and through

connectors
• Results in DAE models

Simulation:
• Numerical methods for simulations
• Explicit and implicit methods
• Accuracy (local and global error), stability
• Variable step length
• Stiff differential equations
• Numerical methods for (low-index) DAEs



www.liu.se

www.liu.se

	DAE Models
	Object-Oriented Modeling
	Simulation

