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DAE Models
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DAE Models

• First-principles modeling often results in Differential Algebraic
Equations (DAEs): A set of equations describing the relation between
some physical variables z, their derivatives ż and input signals u:

F (ż, z, u) = 0

• In general, some components of F contain only undifferentiated
variables (algebraic equations)

• The vector z is called generalized state or internal variables
• Higher order derivatives z̈ can be included in the equation above by

introducing new variables zd = ż such that żd = z̈

• An output equation can also be included:

y = h(z, u)
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Example: A Small Nonlinear DAE

A small nonlinear DAE model:

Cż1 − z2 = 0

z1 +R1z2 +R2z
5
2 − u = 0

y = z1
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Index
The (differentiation) index of a DAE model

F (ż, z, u) = 0 (A)

is the number of differentiations needed to be able to solve ż from the larger
set of equations obtained in this way, resulting in

ż = φ(z, u, u̇, . . . , u(k))

• If ż can be solved directly from (A): state-space model, index = 0
• Otherwise: Differentiate equation (A)

∂F

∂ż
z̈ +

∂F

∂z
ż +

∂F

∂u
u̇ = 0 (B)

If ż can be solved from (A) and (B): index = 1
• Otherwise: Differentiate again, which gives another equation (C). If ż

can be solved from (A), (B) and (C): index = 2
• Otherwise: . . .

The Implicit Function Theorem can be used to draw conclusions about the
solvability of ż
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Example: A Small Nonlinear DAE. . .
A small nonlinear DAE model:

Cż1 − z2 = 0

z1 +R1z2 +R2z
5
2 − u = 0

y = z1

Here, ż1 can be obtained from the first equation:

ż1 =
z2
C

Differentiating the second equation gives:

ż1 +R1ż2 + 5R2z
4
2 ż2 − u̇ = 0 ⇒

ż2 =
u̇− ż1

R1 + 5R2z42
=

u̇− z2/C
R1 + 5R2z42

Hence, this DAE model has index = 1 (since we can determine both
derivatives after one differentiation)
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Index. . .
In principle, a solution to a DAE model can be obtained by selecting initial
conditions that satisfy F (ż, z, u) = 0 and then simulate

ż = φ(z, u, u̇, . . . , u(k))

using standard numerical methods for Ordinary Differential Equations
(ODEs). Observation: DAEs are more complicated than ODEs:
• We might lack an explicit expression for φ
• The solution is less smooth than the input signal since it depends also

on derivatives of the input signal (higher order derivatives in the general
case)

• The initial conditions must satisfy all equations (including algebraic
ones)

• The index can be viewed as a measure of how far a DAE is from an
ODE

• In practice, DAEs with index = 1 are relatively easy to solve numerically
whereas DAEs with higher index are more challenging
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Linear DAE Models

Linear DAE models can be written

Eż + Fz = Gu

where E and F are square matrices
• If E is invertible:

ż = −E−1Fz + E−1Gu (a normal state-space model)

• Genuine DAE models with nontrivial indices are obtained for singular E
matrices

• Result: The DAE Eż + Fz = Gu is uniquely solvable if sE + F is
invertible for some value of s
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Index for Linear DAE Model
1. A linear DAE model where rank(E) = r can be written as[

E1

E2

]
ż +

[
F1

F2

]
z =

[
G1

G2

]
u

where E1 has full rank (r) and the rows of E2 are linear combinations
of the rows of E1

2. Eliminate E2 via row operations[
E1

0

]
ż +

[
F1

F̃2

]
z =

[
G1

G̃2

]
u

3. Differentiate the lower part:[
E1

F̃2

]
ż +

[
F1

0

]
z =

[
G1

0

]
u+

[
0

G̃2

]
u̇

4. If
[
E1

F̃2

]
is invertible: Solve for ż, index = 1

5. Otherwise: Repeat the procedure, index = number of differentiations
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Model Transformations

A linear DAE model
Eż + Fz = Gu

can be transformed by a change of variables z = Qw and multiplication with
P from the left (P and Q non-singular matrices). This gives:

PEQẇ + PFQw = PGu

An output equation y = Hz + Ju is transformed to y = HQw + Ju.
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Standard Form I

Assume that there exists an s0 that makes s0E + F invertible. The matrices
P and Q can then be chosen to yield the following form[

I 0
0 N

] [
ẇ1

ẇ2

]
+

[
−A 0
0 I

] [
w1

w2

]
=

[
B
B̄

]
u

y =
[
C C̄

] [w1

w2

]
+ Ju

where N is nilpotent, i.e., Nk = 0 for some integer k. The index is equal to
the smallest k for which Nk = 0.
• w1 obeys a normal state-space ODE:

ẇ1 = Aw1 +Bu

• Equation for w2:
Nẇ2 + w2 = B̄u
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Standard Form I. . .

Nẇ2 + w2 = B̄u

• If N = 0 (index = 1) then
w2 = B̄u

• If N 6= 0 but N2 = 0 (index = 2) then

w2 = B̄u−NB̄u̇

• In general (index = k):

w2 = B̄u−NB̄u̇+ . . .+ (−N)k−1B̄u(k−1)

(we can solve for ẇ2 by differentiating these equations once, which shows
that the previous index concept is used also here)
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Standard Form II

Hence, we have a second standard form:

ẋ = Ax+Bu (x = w1)

y = Cx+Du+D1u̇+ . . .+Dk−1u
(k−1)

where D = J + C̄B̄, D1 = −C̄NB̄, . . . , Dk−1 = C̄(−N)k−1B̄
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Object-Oriented Modeling
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Modelica

Modelica is a standardized modeling language:
• based on equation descriptions (not necessarily of state-space type)
• facilitates hierarchical modeling using standard components
• object-oriented (inheritance, etc.)
• a standardized and wide-spread language for complex technical systems



15 / 25

A Small Modelica Model

Cż1 − z2 = 0

z1 +R1z2 +R2z
5
2 − u = 0

y = z1

model Circuit
Real z1, z2, u, y;
parameter Real C=1, R1=2, R2=3;

equation
u=10*sin(time);
C*der(z1)-z2=0;
z1+R1*z2+R2*z2^5-u=0;
y=z1;

end Circuit;
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DC Motor in Modelica
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Connectors

Connectors in Modelica are used to connect submodels:
• A small submodel specifying the interface between component

submodels
• Variables that correspond to each other in two submodels that should

interact are set equal or to sum up to zero depending on type
• The use of connectors is one of the reasons why Modelica models often

are DAE models
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Simulation
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Simulation of State-Space Models

A model in state-space form:

ẋ(t) = f(x(t), u(t))

Consider a particular input signal u(t) = ū(t) and a particular initial state
x0. The influence of ū can then be represented with a time-dependency of f
(different f):

ẋ(t) = f(t, x(t))

x(0) = x0

Assume that we want a numerical approximation of x at the time instances

0 < t1 < t2 < . . . < tf

i.e. we want values x1, x2, . . . that approximate x(t1), x(t2), . . .
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Euler’s Methods

The standard Euler method is based on a simple derivative approximation:

xn+1 − xn
h

≈ ẋ(tn) = f(tn, xn), where h = tn+1 − tn

This gives
xn+1 = xn + hf(tn, xn) (explicit method)

The reversed Euler method is on the other hand based on the
approximation:

xn − xn−1

h
≈ ẋ(tn) = f(tn, xn), where h = tn+1 − tn

which gives

xn = xn−1 + hf(tn, xn) (implicit method)
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General k-Step Methods
A general k-step method for numerical simulations of ODEs can be written

xn+1 = G(t, xn−k+1, xn−k+2, . . . , xn, xn+1)

• k previous values are used
• Explicit methods: G does not depend on xn+1

• Implicit methods: G depends on xn+1 ⇒ an equation has to be solved
to get xn+1

Interesting properties:
• Global error En = x(tn)− xn (hard to compute in general, typically

proportional to hp for some p)
• Local error en = x(tn)− zn, where zn = G(t, x(tn−k), . . . , x(tn−1), zn)

(can be computed from the Taylor series expansion, typically
proportional to hp+1)

• Here, p is called the order of accuracy
• Stability: Is often investigated via the scalar test equation ẋ = λx,
x(0) = 1 (check stability of the resulting difference equation)
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Methods and Solvers

• Families of numerical methods: Runge-Kutta methods, Adams’s
methods, . . . (these are better than Euler’s methods for simulations)

• Useful idea: variable step length (idea: estimate the local error by
comparing the result of taking two steps of length h and one of length
2h, adjust h to maintain a chosen tolerance without using an
unnecessarily small h)

• Solvers in Matlab (ode45, ode23, ode113, ode78, ode89, ode15s,
ode23s, ode23t, ode23tb, ode15i)

• The different methods and solvers have their advantages and
disadvantages, which are usually described in literature and help texts.
The concepts discussed here should make the choice of solver easier.
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Stiff Differential Equations

• For some models, the solutions contain both fast and slow components
with large differences between their time constants. Such models are
called stiff.

• The stability requirement can limit the step length in this case, making
the simulations very slow

• Methods for stiff problems are often implicit since such methods often
have larger stability regions than explicit ones
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Simulation of DAE Models

Consider a DAE model F (ż, z, u) = 0. One numerical approach is to
approximate the derivative ż using zn and k earlier z values (a backwards
difference formula, BDF)

ż ≈
k∑

i=0

αizn−i =:
1

h
ρkzn

and to solve the equation

F (
1

h
ρkzn, zn, u(tn)) = 0

recursively. The accuracy depends on the index of the DAE model and
models with higher index than one might require special methods.
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Summary
DAE Models:
• General DAE models are frequent when working with first-principles

modeling
• Key property: Index
• Standard forms for linear DAEs

Modelica:
• Standardized object-oriented modeling language
• Equation-based, both at component/object level and through

connectors
• Results in DAE models

Simulation:
• Numerical methods for simulations
• Explicit and implicit methods
• Accuracy (local and global error), stability
• Variable step length
• Stiff differential equations
• Numerical methods for (low-index) DAEs
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