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Course Overview

Lecturer and examiner: Martin Enqvist

Teaching assistants:
Gustav Zetterqvist
Joel Nilsson

Course room in Lisam (mainly for lab sign-up and hand-ins)

Course webpage: http://www.control.isy.liu.se/student/tsrt92/
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Who am I?

Martin Enqvist:

Education: MSc from Y program at LiU
1996-2000, PhD student in automatic control
at LiU 2000-2005 (PhD thesis: ”Linear
Models of Nonlinear Systems”)

Postdoc at a university in Brussels, Belgium
during 2006

Back at LiU since 2007

Now: Associate professor in automatic
control, research about system identification
(e.g. aircraft, vehicles, ships, robots,
electronics, sound), collaboration with Saab,
ABB and Oticon
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Goals and Themes

The course should give knowledge about methods and principles for con-
structing mathematical models of dynamical systems, and about how pro-
perties of the models can be studied through simulation.

Three themes:

• First principles modeling
• System identification and model learning
• Simulation
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Organization

12 lectures

12 exercise sessions (7 in computer rooms)

3 labs:
• Modeling and simulation of a measurement robot
• System identification of a weather vane (written report + peer review)
• Nonlinear system identification and machine learning

Register as soon as possible!

Computer exam (textbook allowed)
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Course Evaluation Last Year

Result:
• Overall evaluation: mean 2.05
• Response frequency: 36%
• Request for more focus on practical aspects
• Request for closer connection between lectures and exercise sessions
• Some labs took too long time to finish

Changes:
• New examiner
• Revised lecture series
• Compendium about experiment design removed (changed lecture and

exercise session)
• Two lab assistants for lab 1 and 3
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The Use of Models
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Systems and Models

• A system is any kind of physically or conceptually bounded object (e.g.
the solar system, a human brain cell, an electrical motor)

• A model is a description of a system

System properties can be investigated directly in experiments. However, this
can be
• expensive (e.g. reduced quality in a production plant)
• dangerous (e.g. nuclear power plant)
• impossible (e.g. solar system, new inventions or products)
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Models of Different Nature

• physical models (e.g. a small-scale ship model)
• mental models (e.g. our understanding of how to ride a bike)
• verbal models (e.g. an increased power will result in a higher

temperature)
• mathematical models

• based on first principles (domain knowledge, often acquired over long
time)

• based on data-driven modeling (system identification based on
experimental observations)
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The Use of Models

Models can be used for
• simulation (numerical experiments producing computed system

behaviors given a particular starting condition)
• prediction (numerical forecasts over a bounded horizon given past

measurements)
• signal processing
• realistic visualization and virtual reality
• fault detection and diagnosis (by comparing model predictions and

measurements)
• control design
• . . .
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Example: Crash Tests

• Crash tests are expensive
• Simulations are an attractive

complement
• A mathematical model and

reliable simulation tools are
needed
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Example: Aircraft Development

• Simulations can be used to
evaluate the aircraft performance
before the first prototype has
been built

• Simulations increase the safety
during development

• Model-based control design
• Pilot training using simulators



12 / 29

Example: Weather and Climate Models

• Weather forecasts are based on
model-based predictions

• Climate models can be used for
long-term predictions and simulation of
particular scenarios (what is the average
temperature by 2100? - the alternative is
just to wait)

• At the same time: Extrapolations have to
be considered carefully (values might
become larger or smaller than predicted)
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The Use of Models within Automatic Control
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Control without Models

Much of what we humans do can be
viewed as automatic control without
(mathematical) models

• Simple control problems can be solved fairly well without models.
• Controllers can be tuned iteratively by repeated experiments.
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Model-based Control Design

Most modern control design methods are model-based.

Benefits: Model-based
control design
• saves lives
• saves time
• saves money
• can be used to analyze a

system before it exists
Airbus A380
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The Two Sides of Automatic Control

An unforgiving side:

Control design using an incorrect
model might result in an unstable
closed-loop system.

• Controllers must be robust
against model errors.

• Models must come with a quality
measure.

A forgiving side:

A simple approximate model might be
enough for control design purposes in
many cases.

Conclusion: It is OK to use rather
simple models for automatic con-
trol.
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Example: Approximate Models (I)

Assume that we have two models of a
particular system:

G1(s) =
0.4

s
e−0.5s

G2(s) =
2

5s+ 1
e−0.5s

Input (a step):

u(t) =

{
0, t < 0,

1, t ≥ 0

The step responses of the models
differ significantly:
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Example: Approximate Models (II)

Assume that the controller is:

F (s) = 4.4

(
1 +

1

5.2s

)
Closed-loop systems based on the two
models:

Gc,k(s) =
Gk(s)F (s)

1 +Gk(s)F (s)

k=1,2

The step responses of the two
closed-loop systems are similar despite
the model differences:
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The Cost of Modeling

The modeling of an unknown system can be quite time-consuming and
is often a significant part of an industrial control-design project.

• In particular, this is true for
modeling based on first principles
(physical laws, known relations,
etc.).

• A convenient alternative:
Data-driven modeling via system
identification

Paper machine 12 at StoraEnso
Kvarnsveden has 15 000 control

loops.
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The Cost of Modeling. . .
Normally modeling costs account for over 75% of the expenditures
in the design of an advanced control project [1].

Identification is undoubtedly the most important aspect of any con-
trol project, easily taking in excess of 75% of the total project re-
sources [2].

The plant test and subsequent model identification are the most
important steps in an MPC project, and incur the most time, repre-
senting up to 50% of the total project time [3].

[1] M. A. Hussain, Review of neural networks in chemical process control -
simulation and online implementation, Artificial Intelligence in Engineering,
13(1): 55-68, January 1999.

[2] J. W. MacArthur and C. Zhan, A practical global multi-stage method for
fully automated closed-loop identification of industrial processes, Journal of
Process Control, 17(10):770-786, December 2007.

[3] M.L. Darby and M. Nikolaou, MPC: Current practice and challenges, Control
Engineering Practice, 20(4):328-342, April 2012.
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Example Plots
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Example: Hare-Lynx Cycles

Number of hares (blue) and lynxes (red) in Canada over several decades
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Example: Hare-Lynx Cycles. . .

Number of hares (blue) and lynxes (red) according to simple model
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State-space Models
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State-space Models

A common model structure: State-space models:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

where x(t) are states, u(t) inputs and y(t) outputs



26 / 29

State-space Models

What is so special with state-space models?

ẋ(t) = f(x(t), u(t))

Assume x(t0) and u(t) (continuous) are given.
• f continuously differentiable and u(t) is piece-wise continuous ⇒ a

unique solution exists for t ≥ t0
• Reliable numerical methods for finding this solution are available
• For these reasons, it is often beneficial (ideal) to express models on

state-space form
• A common (but not always desireable) alternative:
Differential-algebraic equations (DAEs): F (ż, z, u) = 0
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Linearization

Consider a nonlinear model

ẋ = f(x, u)

y = h(x, u)

with the stationary solution (equilibrium) x0, u0, y0:

0 = f(x0, u0)

y0 = h(x0, u0)

Let

δx = x− x0
δu = u− u0
δy = y − y0
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Linearization. . .

Linearized state-space model:

δ̇x = Aδx +Bδu

δy = Cδx +Dδu

(good approximation for small δx, δu, δy)

Here:
A = fx(x0, u0) B = fu(x0, u0)
C = hx(x0, u0) D = hu(x0, u0)

(Jacobians with element i, j equal to ∂fi
∂xj

)
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Summary

• Systems and models
• Model useage: simulation, prediction, signal processing, visualization,

diagnosis, control design, . . .
• Models for control design
• State-space models: Relatively easy to analyze and simulate,

linearization



www.liu.se

www.liu.se

	The Use of Models
	The Use of Models within Automatic Control
	Example Plots
	State-space Models

