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1 Closed-Loop System Identification

Experimental data can be collected in closed loop due to several reasons. For
example, the open-loop system might be unstable, which essentially makes
it impossible to carry out open-loop experiments. Another possible reason
is that the feedback mechanism might be inherent in the system and hard
or even impossible to turn off without damaging the system. However, the
most common reason is probably that data have been collected during normal
operation with an active feedback controller. This is the situation in many
production plants, transportation systems, heating systems, water supply
and treatment systems, etc., where the performance of the system depends
on the use of feedback control and where the cost of turning off the controller
is high. In such applications, data are usually collected 24/7 for, for example,
safety and performance monitoring purposes, but not always used for sys-
tem identification due to the additional challenges caused by the closed-loop
setting.

In short, many of these challenges are caused by the fact that the input signal
depends on the system disturbances through the feedback controller, which
makes several of the methods that work well in open loop biased in closed
loop. Consider the block diagram shown below.
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Here, we assume that the true system can be written

y(t) = G0(q)u(t) + H0(q)e(t)︸ ︷︷ ︸
=v(t)

,

where e(t) is white noise with variance λ0. The controller can be written

u(t) = r̃(t) − Fy(q)y(t),

where r̃ is a (filtered) reference signal,

r̃(t) = Fr(q)r(t).

2



The objective is to estimate G0(q) (and H0(q)) despite the presence of the
feedback controller Fy(q). We will assume that data have been collected from
the system such that the signals u(t), y(t) and r(t) are available for t = 1,
. . . N .

1.1 Direct Approach

The direct approach to closed-loop system identification is to apply the same
method as in open loop to the measurements of u(t) and y(t) and to ignore
the feedback and reference signal r(t). However, many common open-loop
methods will result in biased estimates if used for closed-loop data. For
example, this is the case for the standard subspace, spectral analysis and
correlation analysis methods. An important exception is the prediction-error
method, which can be applied successfully to closed-loop data provided that
the dataset contains enough excitation (a varying reference signal can be
used to guarantee this) and that the model structure is flexible enough such
that it can describe the true system. In particular, the latter requirement
means that a flexible enough noise model has to be used.

Exercises for Section 1.1

Download the dataset closedloop.mat and load it into Matlab with the
command

load closedloop.mat

This dataset contains 10000 measurements of the input u(t), output y(t)
and reference signal r(t) from a particular closed-loop system where G0(q)
and H0(q) can be described with a Box-Jenkins model with nb = 2, nc = 1,
nd = 2, nf = 2 and nk = 1. The sampling time is 0.1 s and the true system
truesys is available in closedloop.mat for reference.

1. Import a dataset with the measured u(t) and y(t) into the System Iden-
tification GUI and split the data into estimation and validation data.
Furthermore, import the model truesys into the GUI to enable con-
venient (but unrealistic) comparisons with the true system. Estimate
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nonparametric frequency response models using spectral analysis for
different frequency resolutions and evaluate the result. Remember to
turn on the display of confidence intervals such that it is possible to
evaluate which features of the frequency responses to pay attention to.
Does the spectral analysis estimates give an accurate description of the
true frequency response in this case?

2. Estimate an output-error (OE) model of the system and evaluate the
result using frequency and transient responses. Note that both step
and impulse responses can be viewed under transient response (and
that it is often easier to interpret the impulse response). Is the model
estimate accurate?

3. Estimate a Box-Jenkins (BJ) model of the system and evaluate the
result using frequency and transient responses. Is the model estimate
accurate?

4. Estimate a high-order ARX model of the system (with more than 50
poles and zeros). (Remember to select nb ≫ na!) Is this estimate
accurate? Reduce the model order by exporting the high-order model
to workspace, reducing the model order with the command

modelr=tf(balred(ss(model),2,...
balredOptions(’StateElimMethod’,’Truncate’)))

and then importing the new model to the System Identification GUI.
Is this estimate accurate?

1.2 Two-stage Method

The two-stage method for closed-loop system identification involves the fol-
lowing two steps:

1. Estimate a model Ĝru(q) of the transfer function from r(t) to u(t) and
use it construct a new input signal

û(t) = Ĝru(q)r(t)

from r(t).

2. Estimate a model of G0(q) from û(t) to y(t).
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Exercises for Section 1.2

1. Import a new dataset with r(t) as input and u(t) as output to the
System Identification GUI. Estimate a model Ĝru(q) of the transfer
function from r(t) to u(t) and create û(t) by exporting the estimated
model and using the command

uhat=sim(Gruhat,r);

in Matlab’s workspace. Import a new dataset with û(t) as input and
y(t) as output and estimate a model of G0(q). Try OE and BJ model
structures and see if you can find a choice that results in an accurate
model of G0(q).

Solutions with Discussion

The solutions below are not necessarily the only correct ones. Depending on
choices during data processing and estimation, your results may be perfectly
correct even if they do not exactly agree with the discussion below.

Solutions for Section 1.1

1. More features appear when the frequency resolution is increased and
the resonance peak of the true system is visible for M=1000. However,
there is a spurious peak with low uncertainty around ω = 1 rad/s for
higher frequency resolutions (e.g. M=100 and M=1000) which could have
mislead us in a practical situation where the true system is unknown.
This peak comes from the noise properties and is a result of the feedback
in the the system.

2. The estimated OE model with correct nb, nf and nk is very different
from the true system, which is clear when evaluating the frequency and
transient responses. The bias in the model estimate is due to the lack
of a noise model in this case.

3. The estimated BJ model with correct model orders is very close to the
true system. The high accuracy is obtained since the assumed noise
model is able to describe the the true noise coloring.
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4. The high-order ARX models with, for example, na = 50, nb = 100 and
nk = 1 or na = 100, nb = 200 and nk = 1 capture some aspects of the
true frequency and transient responses but are quite noisy. Reducing
the model order improves the accuracy significantly.

Solutions for Section 1.2

1. A BJ model with nb = nc = nd = nf = 5 and nk = 0 of Gru(q) seems
to work well together with an OE model with nb = nf = 2 and nk = 1
or a BJ model with nb = nc = nd = nf = 2 and nk = 1 of G0(q). The
resulting models are accurate.
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