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Chapter 1: Introduction

This document contains examples that are useful for getting started with MathModelica. The
examples have a detailed step-by-step description of how to build and simulate the models.
If you have the Professional edition of MathModelica, you can learn more from the Mathe-
matica notebook examples presented in Appendix A.

It is recommended that you go through the examples in the order given. Note that all exam-
ples are also available in the IntroductoryExamples library. You can browse the package
structure of the IntroductoryExamples library by using the library browser.

Figure 1-1: Browsing the package structure of the IntroductoryExamples Library using the library 
browser.

Double-clicking the name of a package will open the package as a new tree and show its con-
tents in the library browser. Double-clicking on the name of a model will open the model in
a class window.

Additional information about the models in the Introductory Examples library is integrated
into the packages and models and may be viewed by right clicking any package or model in
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the Library Browser and choosing View Documentation from the pop-up menu.

Figure 1-2: Viewing the documentation of a model.

The documentation of the classes will be shown in the Modelica help browser.

Figure 1-3: The documentation of the IntroductoryExamples.Professional package.
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Chapter 2: Hello World

The most basic Modelica model is a differential equation. In this example a differential
equation is implemented and simulated. Also, the process of creating an icon representing
the model graphically is described in detail.

2.1 Hello World model
There is a long tradition that the first example in any computer language is a trivial program
printing the string “Hello World”. Since Modelica, the language used in MathModelica, is
an equation-based language, printing a string does not make much sense. Instead our Hello
World Modelica program solves a trivial differential equation:

The variable x in this equation is a dynamic variable (and a state variable) whose value can
change over time. The time derivative is the derivative of x, written as der(x) in Modelica.
All Modelica programs consist of a class declaration (block, model, package, etc.). In this
example we will declare the program as a model.

We begin by creating a new model at the top level of the Modelica package hierarchy, i.e.,
the model will not be located inside a package. Choose New Class from the File menu.

Figure 2-1: Choosing New Class from the File menu.

This will open the New Class dialog box in which we will specify a name and description

x· x–=
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for the model. Give the model the name "HelloWorld" and the description "A differential
equation".

Figure 2-2: Specifying a name and description for a new model.

When clicking the OK button, the model will be created and become visible in the library
browser. At the same time the model will also be opened in a class window. Click the Mod-
elica text view button in the toolbar to switch to the Modelica text view of the class window.

Figure 2-3: The Modelica text view button in the toolbar of the model editor.

The textual representation of the model should look as follows:

model HelloWorld "A differential equation"
  annotation(...);
end HelloWorld;

The annotation in the second row contains graphical information about the model and is au-
tomatically updated whenever you edit the model in any of the graphical views of the class
window. Note that the description that we entered in the dialog box has been added to the
model. Now it is just a matter of adding the variable and the equation. We will do that by
editing the definition of the model directly in the Modelica text view.

model HelloWorld "A differential equation"
  annotation(...);
  Real x(start=1);
equation 
  der(x)=-x;
end HelloWorld;

Note that when we declare the variable we also set its initial value to 1 by specifying a value
for its parameter start.
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The HelloWorld model is now ready. Before simulating the model, we may want to verify
its correctness by clicking the validate class button in the toolbar.

Figure 2-4: The validate class button in the toolbar of the model editor.

This will generate a report in the Messages View, located below the class window.

If everything was typed in correctly you should find a report similar to the one above.

To perform the simulation of the model we need to start Simulation Center, the simulation
environment of MathModelica. Click the Simulation Center button in the toolbar.

Figure 2-5: The Simulation Center button in the toolbar of the model editor.

Simulation Center will start and the HelloWorld model will automatically be translated into
an executable. An experiment is created for the Hello World model in the experiment brows-
er of Simulation Center.
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Figure 2-6: The settings view of the HelloWorld experiment in Simulation Center.

In the experiment browser you are able to specify simulation settings, parameter values, and
initial values for variables, but we will leave it as is for now. Instead we will click the sim-
ulate button to start the simulation.

Figure 2-7: The simulate button in the toolbar of Simulation Center.

After the simulation is completed, the plot view of the experiment browser becomes visible.
Click the check box in front of the variable x to plot the result.
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Figure 2-8: Plotting the variable x of the HelloWorld model in Simulation Center.

We will now return to the model editor in order to create an icon for the model. Switch to
the icon view of the class window by clicking the icon view button in the toolbar.

Figure 2-9: The icon view button in the toolbar of the model editor.

To create an icon we will use the drawing tools available in the toolbar of the model editor.

Figure 2-10: The drawing tools in the toolbar of the model editor.

By choosing the rectangle tool it is possible to draw rectangles. Draw a rectangle covering
the white area of the icon view. Double-click the rectangle to view and edit the properties of
the rectangle.
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Figure 2-11: Editing the properties of a rectangle.

Change the fill color to grey and select Solid as the fill pattern and click the OK button. Next,
press the Esc key to clear the selection in the icon view. Finally, choose the text item tool
and draw a text item covering the entire rectangle, and change the text to "Hello World" in
the properties dialog box. The reason why it was necessary to clear the selection before
drawing the text item deserves an explanation. Without clearing the selection, we would
have ended up moving the rectangle instead of adding a text item, as all drawing tools can
also be used to move selected items.

The icon of the model should now look similar to the one below.

Figure 2-12: The icon of the HelloWorld model.

The HelloWorld model will from now on be represented by this icon everywhere it is used.
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2.1.1 Exercise

Change the model equation, for instance by adding a parameter and test the result.
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Chapter 3: Multi Domain - a servo
mechanism

This example shows how to develop a servo mechanism model step-by-step in MathModel-
ica. It illustrates the multi-engineering capabilities and shows how you can use Simulation
Center to analyze models created in the model editor, synthesize controllers, and carry out
comparison studies.

3.1 DC Motor
A simple dynamic model of a controlled DC motor consists of a variable voltage source, a
resistor, an inductor, and an electro-motoric force element representing the coupling be-
tween electric energy and mechanical energy provided by the magnetic field in the DC mo-
tor. The motor axis is represented by a rotating mass or inertia.

All of these components can be found in the Modelica standard library, included in
MathModelica. With the help of drag-and-drop they can be used to compose the model as
illustrated in the figure below.

Figure 3-1: The diagram view of a DC Motor in the model editor
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To build this model we need to create a new model, find the appropriate components, drag
and drop the components into the diagram area, and finally connect the components using
the connection line tool.

We begin by creating a new model with the name "DCMotor". The components that we
will use are all available in the Modelica standard library. To locate the components we can
either search for them, or if we know their exact location, open the package that contains
them in the library browser. We will show how to do both.

To locate the step source component we will use the library browser to search for it. Type
"step" (without the quotation marks) in the text box of the library browser and press the En-
ter key or click the Find button to the right of the text box.

Figure 3-2: Searching for a step source component using the library browser in the model editor.

If everything went well, you should have at least 23 matches for "step" in the library brows-
er. The component we want to use is the Modelica.Blocks.Sources.Step component, high-
lighted in the figure above.

To add this component to our DCMotor model, drag it from the library browser and drop
it on the diagram view of the class window.
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The signal voltage component is located in the Modelica.Electrical.Analog.Sources pack-
age. As we know the exact location of the component we will use the tree view of the library
browser and expand the branches of the tree all the way down to the branch which represents
the package Sources in which the component is located in.

Start by expanding the Modelica package. This is done by clicking the symbol to the left
of the package icon and name.

Figure 3-3: Expanding the Modelica package in the library browser.

As you can see the Modelica package has several packages within it. We will continue by
expanding the Electrical package, followed by the Analog package, and finally the Sources
package, in which we will find the signal voltage component.
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Figure 3-4: Expanding the Modelica.Electrical.Analog.Sources package.

Add the SignalVoltage component, highlighted in the figure above, to the DCMotor, by
dragging it to the diagram view of the class window.

We have now added 2 of the 7 components. The 4 electrical components (Resistor,
Inductor, Ground, and EMF) can all be found in the Modelica.Electrical.Analog.Basic
package. As we already have the Modelica.Electrical.Analog package expanded we can
easily locate the Basic package and expand it in order to find the resistor, ground, inductor
and EMF components.



Chapter 3:  Multi Domain - a servo mechanism 15

Figure 3-5: Expanding the Modelica.Electrical.Analog.Basic package

When you have added the electrical components to the DCMotor model, there is only 1 com-
ponent left to add, the inertia. It is located in the Modelica.Mechanics.Rotational package.
You can choose if you want to search for it or browse to it directly by expanding the Mod-
elica, Mechanics, and Rotational packages.

Once you have added the inertia component, all that remains to complete the model of
the DC motor is to connect the components. Components are connected using the
connection line tool.

Figure 3-6: The connection line tool in the toolbar of the model editor.

To connect, for instance the ground to the negative pin of the signal voltage component,
place the mouse cursor above the ground pin, press the left mouse button and hold it down
while moving the mouse cursor to the negative pin of the signal voltage component. To
make the connection, release the mouse button.

Continue connecting all the components until the diagram view of the DCMotor
resembles the picture in figure 3-1.

While dropping and connecting the components, the model editor generates the Modelica
code corresponding to the actions. Switch to the Modelica text view to view the textual rep-
resentation of the model. In the textual representation of the model each component is de-
clared, and each connection between two components is represented by connect equations
in the equation section.
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model DCMotor
  Modelica.Blocks.Sources.Step step;
  Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltage1; 
  Modelica.Electrical.Analog.Basic.Resistor resistor1;
  Modelica.Electrical.Analog.Basic.Inductor inductor1;
  Modelica.Electrical.Analog.Basic.EMF EMF1;
  Modelica.Mechanics.Rotational.Inertia inertia1;
  Modelica.Electrical.Analog.Basic.Ground ground1;

equation 
  connect(EMF1.flange_b,inertia1.flange_a);
  connect(EMF1.n,signalVoltage1.n);
  connect(signalVoltage1.n,ground1.p);
  connect(inductor1.n,EMF1.p);
  connect(resistor1.n,inductor1.p);
  connect(signalVoltage1.p,resistor1.p);
  connect(step1.y,signalVoltage1.v);
end DCMotor;

The order of the declarations and equations depends on in which order you dropped the com-
ponents and made the connections. Therefore the order of the declarations and equations
may be slightly different in your model. Also, for readability, all graphical annotations have
been removed from the definition of the DCMotor above.

The DCMotor model is now complete and possible to simulate. Click the Simulation Center
button to start Simulation Center. In Simulation Center, set the simulation time to 25 sec-
onds by editing the Stop time in the settings view of the DCMotor experiment.

Figure 3-7: Setting the simulation time to 25 seconds for the DCMotor model.

Start the simulation and when completed, select the variables to plot in the experiment
browser as illustrated in the figure below.
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Figure 3-8: Plotting inertia1.w and singalVoltage1.v for the DCMotor model with default parameter 
values.

Finally, we get the result, with the plot of inertia.w vs. time and signalVoltage1.v vs. time.

It is also easy to change parameter values in order to modify the system behavior. We will
change the resistance of the resistor, the inductance of the inductor, and the moment of the
inertia in order to yield a damped step response instead of an oscillative step response.

Switch to the parameter view in the experiment browser. To edit a parameter value in
the parameter view, double click the current value. Set the resistance of resistor1 to 10 Ohm,
the inductance of inductor1 to 0.1 H, and the moment of inertia1 to 0.3 kgm2.

Simulate the model again and study the updated plot of the angular velocity of the
inertia.
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Figure 3-9: Plotting inertia1.w and singalVoltage1.v for the DCMotor model with customized 
parameter values.

3.2 Stiff and weak axis
In this section we will begin by develop a stiff axis model, study its step response by adding
a step torque, as illustrated below, and show how the axis can be more accurately modeled
by including an additional weakness to the stiff axis model.

We begin by developing the stiff axis model. The components (Step, Torque, Inertia,
and IdealGear) of the model can all be found by expanding the Modelica.Blocks.Sources
and Modelica.Mechanics.Rotational packages in the library browser, or by simply searching
for them. You can give the model any name you want. The different stages of the model are
also available in the IntroductoryExamples.MultiDomain package. Note however that all
models in IntroductoryExamples are read-only models and cannot be modified, so there is a
point in developing the models yourself if you want to be able to do everything that is
involved in the steps of this example.

Figure 3-10: The diagram view of the IntroductoryExamples.MultiDomain.StiffAxis model.

By selecting the idealGear1 component, we are able to edit the parameters of the component
in the parameters view, located at the bottom part of the model editor.
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Figure 3-11: Editing the transmission ratio of a ideal gear component in the model editor.

Give the gear ratio parameter a value of 3. This means that angles and angular velocity are
amplified three times and the torque is attenuated by a factor of three from one side of the
gear to the other. Also, change the start time of the step source by changing the value of the
parameter startTime to 1 s.

After simulating the system for 6 seconds we observe that a constant torque results in a con-
stant angular acceleration, i.e. a ramp in angular velocity and a square curve for the angle of
the axis, as seen below.

Figure 3-12: Plotting the torque, the angle of inertia2, and the angular velocity of inertia2 for the 
IntroductoryExamples.MultiDomain.StiffAxis model.

By including an additional weakness, the axis can be more accurately modeled. This is pos-
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sible by substituting the above axis model with a model consisting of two rotating masses
connected by a torsion spring, according to the figure below. The torsion spring is found in
the Modelica.Mechanics.Rotational package.

Figure 3-13: The diagram view of the IntroductoryExamples.MultiDomain.WeakAxis model.

Notice that inertia1 and inertia2 has been given a moment of 0.5 kgm2, and the spring con-
stant of spring1 is set to 0.5 Nm/rad. We simulate this subsystem for 6 seconds and then
study the result. A comparison with the stiff axis model shows that we have similar behavior
but with an added deflection. Note that inertia3, and not inertia2 as earlier, is the last element
of the axis. Therefore we plot the rotational velocity and angle for inertia3 in order to do a
fair comparison.

Figure 3-14: Plotting the torque, the angle of inertia3, and the angular velocity of inertia3 for the 
IntroductoryExamples.MultiDomain.WeakAxis model.

3.2.1 Exercise

Make a simple DC motor with a torsional spring to the outgoing shaft and another inertia
element. Simulate and study the results. Adjust some parameters and compare results. You
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may also want to add an input torque and connect it to inertia2, and study the system.

3.3 Control System
We end this chapter by developing a stiff and weak servo mechanism, using the DC motor
model and axis models developed earlier in this chapter.

The structure of the control system is shown in the schematic picture below. This system
consists of an input signal, a sensor, a feedback loop, and a regulator. The physical system
consists of the DC motor and one of the axis systems. Since the physical system has negative
static gain, the PI gain must also be negative.

Figure 3-15: Simplified representation of a control system.

We connect all three subsystems as seen in the figure above. The default choices of regulator
parameters are k=1 and T=1, where the PI regulator transfer function is:

We begin by developing a control system for the DC motor and the stiff axis developed ear-
lier. As seen in the figure below three new components are introduced, a feedback compo-
nent, a PI controller, and a speed sensor.

Figure 3-16: The diagram view of the IntroductoryExamples.MultiDomain.StiffServoMechanism 

GPI kTs 1
Ts
------+=
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model.

These components can be found in the following packages:

• The PI controller is found in the Modelica.Blocks.Continuous package.
• The feedback component is found in the Modelica.Blocks.Math package.
• Finally, the speed sensor is found in Modelica.Mechanics.Rotational.Sensors.

When simulating this model, we will pay attention to the response for the angular velocity
of both the motor axis and the gear axis shown in the figure below. The model was simulated
for 25 seconds.

Figure 3-17: Plotting the angular velocity of inertia1 and inertia2 for the 
IntroductoryExamples.MultiDomain.StiffServoMechanism model.

Until now we have used default parameters for the controller. By varying the controller gain
k we can control the response. In this case we vary the gain from 1 to 2 by intervals of 0.25.
We can compare the results of all the simulations by creating a new experiment for each sim-
ulation and then plot the results in the same window. New experiments are created by choos-
ing New from the File menu in Simulation Center. Set the appropriate parameter values for
each experiment, simulate, and plot the results.
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Figure 3-18: Plotting the angular velocity of inertia1 and inertia2 for the 
IntroductoryExamples.MultiDomain.StiffServoMechanism model with different controller gain.

By studying the angular velocity response for the motor and gear axes using different regu-
lator gains we conclude that by choosing k = 1.5 (the plotted curves with a slightly thicker
width in the figure above) we get a sufficiently fast response with few oscillations.

Finally, we develop a control system for the DC motor and the weak axis system.

Figure 3-19: The diagram view of the IntroductoryExamples.MultiDomain.WeakServoMechanism 
model.

Before simulating, we set the controller gain to k = 1.5, and compare the results with the re-
sults of the stiff axis system.
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Figure 3-20: Comparison between the inertias of the StiffServoMechanism model and the 
WeakServoMechanism model with a regulator gain of k = 1.5.

As seen above, the controller design made using the stiff axis model also performs well for
the more accurate weak axis.

3.4 Sensitivity Analysis
In this section we will study how sensitive our control design is to changes of different sys-
tem parameters. This is done using the CVODES solver that supports forward sensitivity
analysis. The sensitivity si(t) for a state yi(t) with respect to the parameter p is given by:

In other words at each time instance the sensitivity represents how much the solution for
the state yi(t) would change for a small change of parameter p. 

Let us study the sensitivity of our control design with respect to the three inertias. To do
so we select the CVODES solver in the experiment settings and check the SA check boxes
in the parameters view for interta1.J, interia2.J and internia3.J.

si t( )
∂yi t( )
∂p

--------------=
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Figure 3-21: Selecting the CVODES solver and selecting inertia1.J, inertia2.J and inertia3.J for 
sensitive analysis.

When the simulation has finished we can find the result of the sensitivity analysis in the
plot view as an expandable tree below each state. Figure 3-22 shows the solution
sensitivities for intertia3.w with respect to intertia1.J, intertia2.J and intertia3.J. There we
can see that intertia1.J has a minor impact on the solution of intertia3.w in the beginning of
the simulation. An impact that diminishes towards the end of the simulation. Furthermore,
intertia2.J has a negligible impact on the solution during the whole simulation. The inertia
intertia3.J on the other hand has a significantly larger impact on the solution. From this we
can conclude that our control design is most sensitive to changes of inertia3.J.
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Figure 3-22: The solution sensitivity of intertia3.w with respect to intertia1.J, intertia2.J and 
intertia3.J.

To verify our results we perform the following simulations:

• WeakServoMechanism 1 - The original settings.
• WeakServoMechanism 2 - intertia1.J increased with 50%.
• WeakServoMechanism 3 - intertia2.J increased with 50%.
• WeakServoMechanism 4 - intertia3.J increased with 50%.

The result is shown in Figure 3-23 and there we can confirm our analysis:
• WeakServoMechanism 2 - Changing intertia1.J has some impact in the beginning of the

simulation but it diminished towards the end.
• WeakServoMechanism 3 - Changing intertia2.J has almost no impact at all.
• WeakServoMechanism 4 - Changing intertia3.J has the most impact, it leads to a phase

shift of the oscillations as well as increased amplitude.
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Figure 3-23: The result of changing intertia1.J, intertia2.J and intertia3.J respectively.
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Chapter 4: Component Based - Simple
Circuit

Block-based modeling is well suited for problems that have a well defined causality, i.e., di-
rection of flow. An example of these types of signal-based systems is a control system. How-
ever in most cases the causality is not pre-defined, for instance a motor could also be used
as a generator depending on whether or not the input signal is the current or torque. Another
basic example is the AC circuit below. 

Figure 4-1: The draft schematics of an AC circuit model.

In this example the circuit above will be used to illustrate the difference between a block-
based approach and a component-based approach to model the circuit.

4.1 Block-Based Circuit
We begin by creating a block-based model. Before we actually start implementing the model
we have to:

• Decide on input and output signals for the system.
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• Set up the system of equations.
• Derive the output as a function of the input.

In this example we want to study the current through the signal voltage as a function of the
voltage. To calculate this we have three equations:

Where i is the total current through the signal voltage, i1 and i2 are the currents running
through resistor1 and resistor2 respectively. Using the Laplace-transform on the above
equations resolves i as a function of u as seen in the following equations:

With these equations we can now implement the block-based model as shown below.

Figure 4-2: The diagram view of the IntroductoryExamples.ComponentBased.BlockCircuit model.

Create a new model, and locate the components in the library browser. All components re-
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quired to implement the system with a block-based approach can be found in the following
packages:

• Modelica.Blocks.Sources
• Modelica.Blocks.Math
• Modelica.Blocks.Continous.

To view the components in the Modelica.Blocks.Sources package in the library browser, ex-
pand the Modelica package, followed by Blocks and Sources, by clicking the symbol to the
left of each package icon and name.

Figure 4-3: Expanding the Continuous, Math, and Sources packages within Modelica.Blocks.

Place the components in the diagram view of your model by dragging them from the library
browser and dropping them in the view. Complete the model by connecting the components. 

Switch to Simulation Center and simulate the model for 10 seconds. The output current is
the result of add2. The signals i1 and i2 are from gain3 and integrator1 respectively. The pic-
ture below shows the resulting current.
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Figure 4-4: Plotting add2.y for the IntroductoryExamples.ComponentBased.BlockCircuit model 
with default parameters values.

4.2 Component-based circuit
Naturally, implementing a component-based model of the system shown in figure 4-1 re-
quires only drag-and-drop as well as connecting the components and setting parameters.
This leaves us with a model that looks just like the drawing with which we started with.
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Figure 4-5: The diagram view of the IntroductoryExamples.ComponentBased.ElectricCircuit 
model.

If you would like to build the model yourself, the sine voltage component is located in the
Modelica.Electrical.Analog.Sources package, and the rest of the components in the Model-
ica.Electrical.Analog.Basic package. Note that some of the parameter values differs from
the default, so in order to obtain the same simulation results you will have to change these
as well.

Now we can simulate and plot the resulting current through the signal voltage, and as ex-
pected it looks just like the result plotted from the block model.

Figure 4-6: Plotting the current going through the source, for the 
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IntroductoryExamples.ComponentBased.ElectricCircuit model with default parameters values.

We will end this chapter by adding a second capacitor to the model as shown below. The
capacitor component is located in the Modelica.Electrical.Analog package.

Figure 4-7: The diagram view of the of IntroductoryExamples.ComponentBased.ElectricCircuit2 
model.

After simulation we compare the resulting currents with one another.

Figure 4-8: Comparison between the two currents going through the source in the ElectricCircuit and 
ElectricCircuit2 models.

4.2.1 Exercise

Develop a block-based model for the second circuit.
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Chapter 5: Custom Component - Chain
Pendulum

This chapter illustrates how to create and reuse a custom component. A chain pendulum can
be seen as a concatenation of chain links, where each chain link consists of a body rotating
around one end. We will show how to create a chain link component that will be reused in
the chain pendulum model.

5.1 Chain Link Component
The components needed to build the chain link are available in the MultiBody and Modelica
standard libraries included in MathModelica. The chain link is inspired by the pendulum ex-
ample in the MultiBody library and consists of a body rotating around a revolute joint. To
add friction to the rotation, a damper is connected to the revolute joint.

To build the model "chain link", we need to create a new model, find the appropriate
components, drag and drop the components into the diagram area, and connect the
components using the connection line tool. These first steps are explained in details in
section 3.1. Furthermore, for the model to be used as a component, it also needs connector
interfaces to permit connection to other components. We will show how the connector
interfaces are added easily with the connection line tool. Parameters are also added to the
component to make it more flexible. 

We begin by creating a new model that we call "ChainLink". The components needed
are a revolute joint "Revolute" located in MultiBody.Joints, a body "BoxBody" located in
MultiBody.Parts and a rotational damper "Damper" in Modelica.Mechanics.Rotational.
Accessing the components in the library browser is explained with more details in section
3.1.

To add a component to the ChainLink model, drag it from the library browser and drop
it on the diagram view of the class window. The model is depicted in figure 5-1. 
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Figure 5-1: Diagram view of ChainLink model.

Once you have added the three components, you need to connect them between each other.
Components are connected using the connection line tool.

Figure 5-2: The connection line tool in the toolbar of the model editor.

Only connectors with similar properties should to be linked to each other. This rule is sup-
ported by the connection line tool. If the user tries to connect two incompatible connectors,
the connection line will be disabled as seen in figure 5-3 and a message error will appear.

Figure 5-3: Example when the connection line is disabled between two incompatible components. 
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The MultiBody connectors are called "frames" and represent coordinate systems. Since we
want the body to rotate around one end, we choose to connect frame_a1 of the boxBody1 to
the frame_b1 of the revolute joint. The damper is connected to the revolute joint by using
the 1 dimensional mechanical systems connectors, called "flanges". 

To connect, for instance frame_a1 (blue connector) of boxBody1 to frame_b1 (white
connector with blue border) of the revolute joint component, place the mouse cursor above
frame_a1 of boxBody1, press the left mouse button and hold it down while moving the
mouse cursor to frame_b1 of the revolute joint component. To make the connection, release
the mouse button.

The two flanges of the damper, which are connectors for 1 dimensional mechanical
systems are connected to the flanges of the revolute joint in the same manner. 

Since we want to use this model as a component, we need to add compatible connectors
so the model can be linked to other components. With the connection line tool, this task is
simple. Place the mouse cursor above frame_b1 of boxBody1, press the left mouse button
and hold it down while moving the cursor to the desired position of the new connector. To
create the connection, right-click on the mouse button and choose "Create Connector". A
compatible connector is created. A connector to frame_a1 of the revolute joint is created
using the same method.

Figure 5-4: Adding a component connector with the connection line tool.

We now would like to add parameters to the component to make it more flexible. This will
be done in the text view. While dropping and connecting the components, the model editor
generates the Modelica code corresponding to the actions. Switch to the Modelica text view
to view the textual representation of the model. In the textual representation of the model
each component is declared, and each connection between two components is represented
by connect equations in the equation section.

In the textual view, we declare dimension vector "r" of boxBody1 (length, width, height)
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and the damping coefficient "d" as parameters. 
model ChainLink 
     MultiBody.Joints.Revolute revolute1;
     MultiBody.Parts.BoxBody boxBody1(r=r);
     Modelica.Mechanics.Rotational.Damper damper1(d=d);
     MultiBody.Interfaces.Frame_a frame_a1;
     MultiBody.Interfaces.Frame_b frame_b1;
     parameter Real r[3]={1,0.1,0.1};
     parameter Real d=1.0;
 
equation 
     connect(boxBody1.frame_b,frame_b1);
     connect(revolute1.frame_b,boxBody1.frame_a); 
     connect(revolute1.frame_a,frame_a1); 
     connect(damper1.flange_b,revolute1.axis); 
     connect(damper1.flange_a,revolute1.bearing); 
end ChainLink;

We now create an icon for the component. Switch to the icon view and draw the component
icon with the help of the Graphic tools in the Standard toolbar.

Figure 5-5: The Graphic tools in the Standard toolbar.

Note that the connectors were automatically added in the icon window when created with
the connection line tool. 

We describe the chain link with an ellipse. To change the ellipse properties, double click
on the ellipse object or select it with the mouse and press "Return". 

We use the Text tool to display the name of the component, by adding a text item with
text "%name". To add any parameter display, the user should type a "%" followed by the
parameter name. We display the components parameters r and d by adding two text windows
with text "%r" and "%d".
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Figure 5-6: Icon view of the ChainLink component.

5.2 Chain Pendulum Model

Once we have the chain link component, the chain pendulum model is represented with a
concatenation of four chain links connected between each other and to the initial frame. The
diagram view of the chain pendulum model is represented in figure 5-7. 

Figure 5-7: Diagram view of the chain pendulum model.
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Switch to Simulation Center and simulate the model for 10 seconds. The pendulum anima-
tion can be visualized after simulation by choosing Animation in View menu. 

Figure 5-8: Animation is viewed by selecting Animation in View menu. 

Figure 5-9 displays the animation view of the pendulum at time 4.52 seconds.

Figure 5-9: Animation view of the chain pendulum at time 4.52 seconds.

Position of the end of the pendulum in x direction (horizontal axis) and y direction (vertical
axis) is displayed in figure 5-10.
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Figure 5-10: Plotting the horizontal position (dotted line) and vertical position of the end of the 
pendulum.

5.2.1 Exercise

The interested reader can create a more general chain pendulum component with the number
of chain links as parameter.

Hint, you can use a for loop to connect the chain links.
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Chapter 6: External Functions - Chirp
Signal

While it is easy to write Modelica functions, it is sometimes convenient to call a subroutine
written in C or FORTAN. This example shows how to use an external function written in C.

6.1 Chirp function
A chirp signal is a sinusoid with a frequency that changes continuously over:

• a certain band:

• a certain time period:

We will use the following signal:

The instantaneous frequency in this signal is obtained by differentiating the argument with
respect to time t:

We see that the instantaneous frequency increases from the lower bound of the frequency
band to the higher. When applying the signal to a system it gives good control over the ex-
cited frequency band, and is therefore often used for system identification. In this example
we will define the chirp function in C and then use it as an external function in Modelica.
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6.2 Modeling
We begin by creating a Modelica function called Chirp that will make an external call to a
C function with the same name (for details on how to create models, see any of the previous
examples).

function Chirp
   input Modelica.SIunits.AngularVelocity w_start;
   input Modelica.SIunits.AngularVelocity w_end;
   input Real A; 
   input Real M;
   input Real t;
   output Real u "output signal";
   external "C" annotation(Include="#include \"Chirp.c\"");
end Chirp;

The function has five input signals, one output signal, and a call to the external function
Chirp.c. The declaration assumes that the function Chirp.c is declared with these five inputs
and returns a double. If, for some reason, you wish to switch the order of the variables in
calling the function this is possible by changing the declaration to, for instance, the follow-
ing:

external "C" Chirp(t,A,M,w_start,w_end) 
annotation(Include="#include \"Chirp.c\"");

However, in this case we define a function that uses the same variables in the same order:

double Chirp(double w1, double w2, double A, double M, double 
time)
{
   double res;
   res=A*cos(w1*time+(w2-w1)*time*time/(2*M));
   return res;
}

The function can be written in any text editor, and stored with the name Chirp.c. In this case
the C function should be stored in the same library as the Modelica function. It can be placed
in other places too, but the annotation should then be changed accordingly. For instance, if
desired you can place the function directly in the root of C:

external "C" annotation(Include="#include \"c:\\Chirp.c\"");

As soon as the C function is saved, the Modelica function is ready to use. To do this we de-
fine a Modelica block and call the Chirp function within it.
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block ChirpSignal
   Modelica.Blocks.Interfaces.RealOutput u;
   parameter Modelica.SIunits.AngularVelocity w_start=0;
   parameter Modelica.SIunits.AngularVelocity w_end=10;
   parameter Real A=1; 
   parameter Real M=10;
equation
  u=Chirp(w_start, w_end, A, M, time);
end ChirpSignal;

Note that we have set default parameters so that the signal will increase from 0 to 10 rad/s
in 10 seconds, as shown by this simulation result: 

Figure 6-1: Plotting the chirp signal u of the IntroductoryExamples.ExternalFunctions.SeriesCircuit 
model.

The attentive reader will note that the variable u was declared as the predefined Modelica
connector Modelica.Blocks.Interfaces.RealOutput, which is used in most block models in
the Modelica Blocks library. As a result, ChirpSignal can be used in other models as an input
source. For instance, we can use it to test the resonant frequency of the following electrical
circuit.
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Figure 6-2: The diagram view of the IntroductoryExamples.ExternalFunctions.SeriesCircuit model.

Note that the default parameters of the electrical components have been changed according
to the figure above. We have also changed the parameters of the chirp to sweep from 0 to
1000 rad/s.

Next we simulate and study the current.

Figure 6-3: Plotting the current i of the IntroductoryExamples.ExternalFunctions.SeriesCircuit 
model.
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As seen we get a top around 5 seconds, which corresponds to:

This can also be verified by calculating the resonant frequency for the circuit analytically as
follows:

Of course for more complicated systems it might be difficult to calculate the resonant fre-
quency analytically, and in these cases a chirp signal can be very useful.

6.2.1 Exercise

The chirp signal can easily be implemented as one single Modelica block without using a
external function. This is left to the interested reader as an exercise.
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Chapter 7: Tank System

This example illustrates how you can build a hierarchical model using MathModelica Sys-
tem Designer as well as make new libraries. A flat-tank model is first developed, followed
by a similar component-based tank model. We then see the flexibility that this gives us to
test new scenarios.

7.1 Flat tank
The system we will begin with is a one-tank system with a controller, as illustrated in the
picture below.

Figure 7-1: A graphical representation of a tank system.

To implement the model we need to set up the system equations. The water level, h, in the
tank is a function of the flow in and out of the tank and the tank area:

In this example we choose an input flow that is constant the first 150 seconds after which it
triples:

h·
qin qout–

A
----------------------=
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where flowLevel is a parameter. By controlling the output flow we will try to keep the tank
level at a desired reference value, ref. In order to do this we implement a PI controller:

where K is the controller gain and T is the time-constant of the controller. Finally, we limit
the output flow to a minimum value, minV, and a maximum value, maxV. With this infor-
mation we can implement the flat Modelica code.

model FlatTank
  parameter Real flowLevel(unit="m3/s")=0.02;
  parameter Real area(unit="m2")=1;
  parameter Real flowGain(unit="m2/s")=0.05;
  parameter Real K=2 "Gain";
  parameter Real T(unit="s")=10 "Time constant";
  parameter Real minV=0,maxV=10;
  parameter Real ref=0.25 "Reference level for control";
  Real h(start=0,unit="m") "Tank level";
  Real qInflow(unit="m3/s") "Flow through input valve";
  Real qOutflow(unit="m3/s") "Flow through output valve";
  Real error "Deviation from reference level";
  Real outCtr "Control signal without limiter";
  Real x "State variable for controller";
equation
  assert(minV >= 0, "minV must be greater or equal to zero");
  der(h)=(qInflow - qOutflow)/area;
  qInflow=if time > 150 then 3*flowLevel else flowLevel;
  qOutflow=Functions.LimitValue(minV, maxV, -flowGain*outCtr);
  error=ref - h;
  der(x)=error/T;
  outCtr=K*(error + x);
end FlatTank;

function LimitValue
  input Real pMin;
  input Real pMax;

qin
flowLevel t 150s<,

3 flowLevel( ) t 150s≥,⎩
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  input Real p;
  output Real pLim;
algorithm 
  pLim:=if p > pMax then pMax else if p < pMin then pMin else p;
end LimitValue;

By simulating the model for 250 seconds we can see that the tank level starts to increase,
reaching and then surpassing the desired reference level. Once the desired level is surpassed,
the outflow is opened and after 150 seconds the level is stabilized. However, at this moment
the input flow is suddenly increased, thus increasing the water level before the controller
manages to stabilize it again. This is illustrated in the figure below.

Figure 7-2: Plotting the tank level and the flows through in and out the flat tank with default 
parameters values.

7.2 Component-based tank
Implementing a component-based tank will require a bit more work to begin with, but as
soon as we start experimenting with the tank and testing different scenarios we will regain
the invested time.

When using the object-oriented component-based approach to modeling, we first try to un-
derstand the system structure and decomposition in a hierarchical top-down manner. Once
the system components and interactions between these components have been roughly iden-
tified, we can apply the first traditional modeling phases of identifying variables and equa-
tions to each of these model components.

By studying Figure 7-1 we see that the tank system has a natural component structure.
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We can identify five components in the figure: the tank itself, the liquid source, the level
sensor, the valve, and the controller. However, since we will choose very simple represen-
tations of the level sensor and the valve, i.e. just a simple scalar variable for each, we let
these variables be simple Real variables in the tank model instead of creating two new class-
es, each containing a single variable.

The next step is to determine the interactions and communication paths between the compo-
nents. It is fairly obvious that fluid flows from the source tank via a pipe. Fluid also leaves
the tank via an outlet controlled by the valve. The controller needs measurements of the fluid
level from the sensor. Thus, a communication path from the sensor of the tank and the con-
troller needs to be established.

In order to connect communication paths, connector instances must be created for those
components which are connected, and connector classes must be declared when needed. In
fact, the system model should be designed such that the only communication between a
component and the rest of the system is via connectors.

Finally, we should think about reuse and generalizations of certain components. For exam-
ple, do we expect that several variants of a component will be needed? In the case of the tank
system we expect to plug in several variants of the controller, starting with a PI controller.
Thus, it is useful for us to create a base class for tank system controllers.

The structure of the tank system model developed using the object-oriented component-
based approach is clearly visible in Figure 7-3 below.

Figure 7-3: A graphical representation of an object-oriented component-based tank system.

We can identify three different types of classes that will be used in the model: interfaces,
functions and components. Therefore, we develop a package containing three sub packages.
To create a package right-click on the tree root in the library browser and select New Class
as shown in Figure 7-4. You can as well right-click on the package you want to add your
package to and select New Class.
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Figure 7-4: Menu to create a new class

In the dialog box that opens, set the class restriction to package and give the package the
name "Hierarchical". Click the OK button to create the new package. The package will ap-
pear in the main tree of the library browser. By right clicking the name of the new package
we can create and add models and packages to it.

7.2.1 Interfaces

We are now ready to create the interfaces, called connectors. Begin by creating a new pack-
age Interfaces within the Hierarchical package. Unless already expanded, expand the Hier-
archical package in the library browser to view its contents. Create connector classes within
the Interfaces package by specifying connector as the class restriction in the new class dialog
box.

Create one connector class for reading the fluid level (see the Hello World example to
see how to edit models textually and make model icons):

connector ReadSignal "Reading fluid level"
   Real val(unit="m");
end ReadSignal;

Create a second connector class for the signal to the actuator for setting valve position.

connector ActSignal "Signal to actuator for setting valve 
position"
   Real act;
end ActSignal;

Finally create a connector class for the liquid flow at inlets and outlets:
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connector LiquidFlow "Liquid flow at inlets or outlets"
   Real lflow(unit="m3/s");
end LiquidFlow;

7.2.2 Tank components

The next step is to create the three components of the system. Begin by creating a Compo-
nents package within the Hierarchical package. In the Components package, create a tank
model named Tank. The tank model has four interfaces (connectors in Modelica): qIn for
input flow, qOut for output flow, tSensor for providing fluid level measurements, and tAc-
tuator for setting the position of the valve at the outlet of the tank. The central equation reg-
ulating the behavior of the tank is the mass balance equation, which in the current simple
form assumes constant pressure. The output flows are related to the valve position through
the flowGain parameter and the LimitValue function. This function guarantees that the flow
does not exceed what corresponds to the open/closed positions of the valve:

model Tank;
   parameter Real area(unit="m2")=0.5;
   parameter Real flowGain(unit="m2/s")=0.05;
   parameter Real minV=0,maxV=10;
   Real h(start=0.0,unit="m") "Tank level";
   Hierarchical.Interfaces.ReadSignal tSensor "Connector, sensor 
reading tank level (m)"; 
   Hierarchical.Interfaces.LiquidFlow qIn "Connector, flow (m3/s) 
through input valve"; 
   Hierarchical.Interfaces.LiquidFlow qOut "Connector, flow (m3/s) 
through output valve"; 
   Hierarchical.Interfaces.ActSignal tActuator "Connector, 
actuator controlling input flow"; 

equation 
assert(minV >= 0, "minV - minimum Valve level must be >= 0 ");
  der(h)=(qIn.lflow - qOut.lflow)/area;

equation 
  qOut.lflow=Functions.LimitValue(minV, maxV, -
flowGain*tActuator.act);
  tSensor.val=h;
end Tank;

The model uses the already defined connector as well as the LimitFunction, which has not
been defined yet. This is defined by creating the following function within a new package,
named Functions. As it is a function we set its class restriction to Function when creating it.
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function LimitValue;
  input Real pMin;
  input Real pMax;
  input Real p;
  output Real pLim;
algorithm 
  pLim:=if p > pMax then pMax else if p < pMin then pMin else p;
end LimitValue;

The fluid entering the tank must originate somewhere. Therefore we have a liquid source
component in the tank system Flow which increases sharply at t=150 to three times the pre-
vious flow level. This creates an interesting control problem that the tank controller must
handle. The following model is created in the Components package:

model LiquidSource;
  parameter Real flowLevel=0.02;
  Hierarchical.Interfaces.LiquidFlow qOut;

equation 
  qOut.lflow=if time > 150 then 3*flowLevel else flowLevel;
end LiquidSource;

7.2.3 Controllers

Finally the controllers need to be specified. We will initially choose a PI controller but later
replace it with other kinds of controllers. The behavior of a PI (proportional and integrating)
controller is primarily defined by the following two equations:

Here x is the controller state variable, error is the difference between the reference level and
the actual level of liquid obtained from the sensor, T is the time constant of the controller,
outCtr is the control signal to the actuator for controlling the valve position, and K is the gain
factor. These two equations are placed in the controller class PIcontinuousController, which
extends the BaseController class defined later:

model PIcontinuousController
  extends BaseController(K=2,T=10);
  Real x "State variable of continuous PI controller";
  

dx
dt
------ error

T
--------------=

outCtr K* error x+( )=
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equation 
  der(x)=error/T;
  outCtr=K*(error + x);
end PIcontinuousController;

Both the PI and PID controllers to be defined later inherit the partial controller class Base-
Controller, containing common parameters, state variables, and two connectors: one to read
the sensor and one to control the valve actuator.

partial model BaseController;
  parameter Real Ts(unit="s")=0.1 "Time period between discrete 
samples";
  parameter Real K=2 "Gain";
  parameter Real T(unit="s")=10 "Time constant";
  parameter Real ref "Reference level";
  Real error "Deviation from reference level";
  Real outCtr "Output control signal";
  IntroductoryExamples.Hierarchical.Interfaces.ReadSignal cIn 
"Input sensor level,  connector";   
IntroductoryExamples.Hierarchical.Interfaces.ActSignal cOut 
"Control to actuator, connector";

equation
  error=ref - cIn.val;
  cOut.act=outCtr;
end BaseController;

7.2.4 Small tank system

When this is finished we can compose our tank system model with drag-and-drop.

Figure 7-5: The diagram view of the IntroductoryExamples.Hierarachical.TankPI model.



Chapter 7:  Tank System 57

Simulating for 250 seconds yields the same result as the flat-tank system.

Figure 7-6: Plotting the tank level and the flows through in and out the PI tank with default 
parameters values.

7.3 Tank with continuous PID controller
We now define a TankPID system, which is the same as the TankPI system except that the
PI controller has been replaced by a PID controller. Here we see a clear advantage of the
object-oriented component-based approach over the traditional model-based approach,
since system components can easily be replaced and changed in a plug-and-play manner.

A PID (proportional, integrating, derivative) controller model can be derived in a similar
way as the PI controller. The basic equations for a PID controller are the following:

Using these equations and the BaseController class we create the PID controller:

model PIDcontinuousController
  extends BaseController(K=2,T=10);
  Real x "State variable of continuous PID controller";
  Real x "State variable of continuous PID controller";
  
equation 

dx
dt
------ error

T
--------------=

y Tderror
dt

-----------------=

outCtr K error x y+ +( )=
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  der(x)=error/T;
  y=T*der(error);
  outCtr=K*(error + x + y);
end PIDcontinuousController;

We can now compose a PID controlled-tank system using drag-and-drop.

Figure 7-7: The diagram view of the IntroductoryExamples.Hierarachical.TankPID model.

We simulate for 250 seconds again and compare with the previous result.

Figure 7-8: Comparison of tank levels between the TankPI model and a TankPID model.

7.4 Three tanks system
Finally, thanks to the object-oriented component-based approach, we can compose a larger
system with ease.
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Figure 7-9: The diagram view of the IntroductoryExamples.Hierarachical.TankSystem model.

Simulating this system, we can now study how the tank level of each tank is controlled.

Figure 7-10: Evolution of the tank levels from the TankSystem model.

Note that the second tank has a reference level of 0.4 meters while the other tanks only have
a reference level of 0.2 meters.
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Chapter 8: Systems

This chapter describes complete system models of various applications. Currently the fol-
lowing examples are available.

8.1 Inverted Pendulum
A classical engineering problem is to control an inverted pendulum. The pendulum system
consists of an electrical motor, a gear, and a pendulum connected to a cart. The position of
the cart is controlled using a controller with LQ (Linear Quadratic) design. The first priority
of the controller is to make sure that the pendulum stays in upright position.

Figure 8-1: Control parameters for the pendulum.
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To be able to control the pendulum, the position of the cart, x, and the pendulum angle, phi,
is measured. The movement of the cart can be controlled via a force, F, using the flange in-
put.

Simulate the system for 20s and view the result in an animation window. The figure below
shows an animation at time 11.3s using the pulse reference signal (referenceType=2).

Figure 8-2: Animation of the pendulum system.

The position of the cart can be changed by the referenceType parameter. With the time table
option (referenceType=3) you can create your own arbitrary signal. Change different param-
eters of the system, e.g., limit the maximum output signal from the controller (control-
ler.uMax), length of pendulum (pendulum.l_pendulum) and see what happens.
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Appendix A: MathModelica Professional

This appendix contains notebook examples that show how the notebook interface of Math-
ematica can be used to model, simulate, analyze, and document.

All these examples require MathModelica Professional. The examples are also available as
separate Mathematica notebooks which are delivered with MathModelica Professional.
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MathModelica® System 
Designer Professional

Hello World
© MathCore Engineering AB

1 Abstract
The most basic Modelica model is a differential equation. In this example a differential equation is
implemented and simulated. Note that the Introductory Examples document shows how to develop
the same model in the Model Editor and study plots in the Simulation Center.

2 Initialization
To  be  able  to  use  MathModelica  System  Designer  within  Mathematica  we  need  to  load  the
MathModelica package.

Needs@"MathModelica`"D

3 Model
There  is  a  long  tradition  that  the  first  example  in  any  computer  language  is  a  trivial  program
printing  the  string  "Hello  World".  Since  Modelica,  the  language  used  in  MathModelica,  is  an
equation-based  language,  printing  a  string  does  not  make  much  sense.  Instead  our  Hello  World
Modelica program solves a trivial differential equation:
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x° = -a x

The  variable  x  in  this  equation  is  a  dynamic variable  (here  also  a  state  variable)  that  can  change
value over time. The time derivative is the derivative of x, represented as der(x) in Modelica.

All  Modelica programs consist  of  class declaration (class,  block,  model,  package,  etc)  and in  this
case  we  declare  the  program  as  a  model.  Note  that  when  working  with  Modelica  models  in
Mathematica  it  is  recommended that  you  use  the  MathModelica  style  sheet  (this  can  be  found  in
the  Format>Style  Sheet  menu)  as  this  contains  a  special  input  cell  called  ModelicaInput.  Even
though  you  can  type  your  Modelica  models  in  normal  Input  cells,  ModelicaInput  cells  are  better
suited for these purposes. 

Just as any other Mathematica input ModelicaInput cells are evaluated by pressing shift+enter.

model HelloWorld
Real x(start=1);

equation 
  der(x)=-x;
end HelloWorld;

4 Simulation
The  MathModelica  System  Designer  Professional  command  Simulate  simulates  the  model  given
by the Modelica code shown above. 
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?? Simulate

Simulate@model,8t,tmin,tmax<D
simulates the model in the range tmin to tmax.

Attributes@SimulateD = 8ReadProtected<

Options@SimulateD = 8Tolerance → 0.0001, Model → ,
IntervalLength → 0, NumberOfIntervals → Automatic,
InitialValues → 8<, ParameterValues → 8<,
InteractiveVariables → True, ShowNotifications → True,
Sensitivities → 8<, Method → dassl<

We simulate the HelloWorld example.

Simulate@HelloWorld, 8t, 0, 10<D

<SimulationData: "HelloWorld" : : 80., 10.<
: 1007 data points : 0 events : 2 variables>

8x�, x<

The  Simulate  command  returns  a  SimulationData  object  containing  all  model  parameters  and
variables in the form of interpolating functions. It is possible to use the Mathematica Plot command
to plot simulation results.
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Plot@x@tD, 8t, 0, 10<D

2 4 6 8 10

0.1

0.2

0.3

0.4

However,  it  is  better  to  use  the  PlotSimulation  command  as  this  is  especially  adapted  to  handle
simulation  results,  and  it  also  has  the  ability  to  plot  simulation  results  from  several  different
simulations  in  the  same  plot,  using  the  SimulationResult  option.  It  also  has  the  ability  to  plot
hierarchical variables, which are very often used in modeling.
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? PlotSimulation

PlotSimulation@f,8t,tmin,tmax<D generates a plot

of the signal f as a function of t from tmin to tmax.

PlotSimulation@8f1,f2,...<,8t,tmin,tmax<D plots several

functions fi. PlotSimulation@8"var1","var2"<,8t,tmin,tmax<D
plots variables having the Modelica names var1 and var2.

PlotSimulation@f,8t,tmin,tmax<,SimulationResult->resD
generates a plot of f using simulation result res. Default

value of res is the result from the latest simulation.
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PlotSimulation@x@tD, 8t, 0, 10<D
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HelloWorld
x@tD

In many cases you want to compare results for different simulations, for instance you might want to
test different initial or parameter values. 
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?? Simulate

Simulate@model,8t,tmin,tmax<D
simulates the model in the range tmin to tmax.

Attributes@SimulateD = 8ReadProtected<

Options@SimulateD = 8Tolerance → 0.0001, Model → ,
IntervalLength → 0, NumberOfIntervals → Automatic,
InitialValues → 8<, ParameterValues → 8<,
InteractiveVariables → True, ShowNotifications → True,
Sensitivities → 8<, Method → dassl<

We can make several simulations and store the results in different variables.

res1 = Simulate@HelloWorld, 8t, 0, 10<D;
res2 = Simulate@HelloWorld,

8t, 0, 10<, InitialValues → 8x m −10<D;
res3 = Simulate@HelloWorld, 8t, 0, 10<,

InitialValues → 8x m 10<D;

Then we can use the SimulationResult option to compare the results in one plot.
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PlotSimulation@x@tD, 8t, 0, 10<,
SimulationResult → 8res1, res2, res3<D

2 4 6 8

−10

−5

5

10

x@tD
HelloWorld 1
HelloWorld 2
HelloWorld 3

The option PlotStyle enables you to specify the colors, dashing and characteristics of the plots.
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MathModelica® System 
Designer Professional

PlotSimulation
© MathCore Engineering AB

1 Abstract
This  notebook  gives  examples  on  how  to  use  PlotSimulation,  ParametricPlotSimulation  and
ParametricPlotSimulation3D. 

2 Initialization
To  be  able  to  use  MathModelica  System  Designer  within  Mathematica  we  need  to  load  the
MathModelica package.

Needs@"MathModelica`"D;

3 PlotSimulation
First define a simple test model. In this case we define a model of a bouncing ball. Please refer to
the Events.nb notebook for a more detailed model.

model BouncingBall "Simple model of a 
bouncing ball"
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   constant Real g=9.81;
   parameter Real c=0.9;
   parameter Real r=0.1;
   Real x(start=1), y(start=0);
   
equation
   der(x) = y;
   der(y) = -g;
   when x < r then
      reinit(y,(-c)*pre(y));
   end when;
end BouncingBall;

Simulate  the  system  and  show  the  simulation  log.  The  simulation  data  is  returned  as
SimulationData objects.

res1 = Simulate@BouncingBall, 8t, 0, 7<D

<SimulationData: "BouncingBall" : : 80., 7.<
: 1220 data points : 19 events : 6 variables>

8c, x�, y�, r, x, y<

Plot simulation is used in the following way.
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PlotSimulation@x@tD, 8t, 0, 7<D
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It is possible to use any expressions when plotting.
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PlotSimulationAÆ−Cos@x@tDD, 8t, 0, 7<E
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BouncingBall

Æ−Cos@x@tDD

Plotting several functions can be done in the following way:
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PlotSimulationB:x@tD + 3 , Abs@y@tDD>, 8t, 0, 7<F
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BouncingBall

3 + x@tD
Abs@y@tDD

Generate an additional simulation and store the result in res2.
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res2 = Simulate@BouncingBall,
8t, 0, 7<, ParameterValues → c m 0.95D

<SimulationData: "BouncingBall" : : 80., 7.<
: 1129 data points : 11 events : 6 variables>

8c, x�, y�, r, x, y<

The option SimulationResult specifies which simulation data to use.

gr1 = PlotSimulation@x@tD, 8t, 0, 7<,
SimulationResult → res1, ImageSize → 300D;

gr2 = PlotSimulation@x@tD, 8t, 0, 7<,
SimulationResult → res2, ImageSize → 300D;
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Grid@88gr1, gr2<<D
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It is possible to plot functions using data from several simulations.
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PlotSimulation@x@tD, 8t, 0, 7<,
SimulationResult → 8res1, res2<,
PlotRange → Automatic, PlotStyle →

88Dashing@81, 0<D, Red<, 8Dashing@81, 0<D, Blue<<D
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PlotSimulation@8x@tD, y@tD<, 8t, 0, 7<,
SimulationResult → 8res1, res2<, PlotStyle →

Map@8Dashing@81, 0<D, Ó< &, $PlotSimulationColorsDD
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Checking color scheme
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PlotSimulationA
9x@tD, x@tD2, x@tD3, x@tD4, x@tD5, x@tD6, x@tD7=, 8t, 0, 2<E
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ParametricPlotSimulation
Parametric plots can be done using ParametricPlotSimulation.
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ParametricPlotSimulation@
8x@tD, y@tD<, 8t, 0, 7<, AspectRatio → 1D
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84 Example 2 : PlotSimulation



Several plots:

ParametricPlotSimulation@
88x@tD, y@tD<, 8y@tD, x@tD<<, 8t, 0, 7<, AspectRatio → 1D
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ParametricPlotSimulation@8x@tD, y@tD<,
8t, 0, 3<, SimulationResult → res1, AspectRatio → 1D
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ParametricPlotSimulation@8x@tD, y@tD<,
8t, 0, 3<, SimulationResult → res2, AspectRatio → 1D
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ParametricPlotSimulation@8x@tD, y@tD<, 8t, 0, 3<,
SimulationResult → 8res1, res2<, AspectRatio → 1D

0.2 0.4 0.6 0.8

−4

−2

0

2

4

x vs. y

x vs. y
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ParametricPlotSimulation3D
Another simple model is the rossler attractor.

model Rossler "Rossler attractor"
   parameter Real alpha=0.2;
   parameter Real beta=0.2;
   parameter Real gamma=8;
   Real x(start=1);
   Real y(start=3);
   Real z(start=0);
   
equation
   der(x) = (-y)-z;
   der(y) = x+alpha*y;
   der(z) = (beta+x*z)-gamma*z;
end Rossler;

Simulate the model.

res = Simulate@Rossler, 8t, 0, 40<,
InitialValues → 8x m 2, y m 2.5, z m 0<,
NumberOfIntervals → 1000D

<SimulationData: "Rossler" : : 80., 40.<
: 1002 data points : 0 events : 9 variables>

8α, β, x�, y�, z�, γ, x, y, z<

We can make parametric plots in 3 dimensions, using ParametericPlot3D.
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ParametricPlotSimulation3D@
88x@tD, y@tD, z@tD<, 8y@tD, z@tD, x@tD<<, 8t, 0, 40<D
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ParametricPlotSimulation3D@8x@tD, y@tD, z@tD<, 8t, 0, 40<D
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Options

Options@PlotSimulationD

:AlignmentPoint → Center, AspectRatio →
1

GoldenRatio
,

Axes → True, AxesLabel → Automatic,
AxesOrigin → Automatic, AxesStyle → 8<,
Background → None, BaselinePosition → Automatic,
BaseStyle → 8<, ClippingStyle → None,
ColorFunction → Automatic, ColorFunctionScaling → True,
ColorOutput → Automatic, ContentSelectable → Automatic,
DisplayFunction � $DisplayFunction, Epilog → 8<,
Evaluated → Automatic, EvaluationMonitor → None,
Exclusions → Automatic, ExclusionsStyle → None,
Filling → None, FillingStyle → Automatic,
FormatType � TraditionalForm, Frame → False,
FrameLabel → None, FrameStyle → 8<,
FrameTicks → Automatic, FrameTicksStyle → 8<,
GridLines → None, GridLinesStyle → 8<,
ImageMargins → 0., ImagePadding → All,
ImageSize → 400, LabelStyle → 8<, Legend → True,
LegendBackground → Automatic, LegendBorder → Automatic,
LegendBorderSpace → Automatic, LegendLabel → ,
LegendLabelSpace → 0, LegendOrientation → Vertical,
LegendPosition → 8−0.9, 0.57<, LegendShadow → None,
LegendSize → 81, 0.3<, LegendSpacing → Automatic,
LegendTextDirection → Automatic,
LegendTextOffset → Automatic, LegendTextSpace → 15,
MaxRecursion → Automatic, Mesh → None,
MeshFunctions → 8Ó1 &<, MeshShading → None,
MeshStyle → Automatic, Method → Automatic,
PerformanceGoal � $PerformanceGoal,
PlotJoined → True, PlotLabel → None,
PlotLegend → Automatic, PlotPoints → 500,
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PlotRange → All, PlotRangeClipping → True,
PlotRangePadding → Automatic, PlotRegion → Automatic,
PlotStyle → Automatic, PreserveImageOptions → Automatic,
Prolog → 8<, RegionFunction → HTrue &L,
RotateLabel → True, ShadowBackground → GrayLevel@0D,
SimulationResult � $SimulationResult, Ticks → Automatic,

TicksStyle → 8<, WorkingPrecision → MachinePrecision>

The colors are set by default to the following, added to a dashing corresponding to each simulation:

$PlotSimulationColors

8RGBColor@0, 0, 1D, RGBColor@0, 0.5, 0D, RGBColor@1, 0, 0D,
RGBColor@0, 0.75, 0.75D, RGBColor@0.75, 0, 0.75D,
RGBColor@0.75, 0.75, 0D, RGBColor@0.25, 0.25, 0.25D<
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MathModelica® System 
Designer Professional

Hybrid DC Motor
© MathCore Engineering AB

1 Abstract
In  this  example  the  Model  Editor  has  been  used  to  build  a  DC  motor  and  a  weak  axis  with  an
applied  torque.  The  torque  is  inactive  for  some time when the  axis  starts  to  spin.  Note  that  some
connectors  do  not  have  arrows  indicating  the  direction  of  the  signal.  This  means  that  the  signal
does not have a specified direction. These components contain equations (not assignments) making
them more usable since the equations can be solved without taking the signal flow into account.

2 Initialization
To be able to use MathModelica within Mathematica we need to load the MathModelica package.

Needs@"MathModelica`"D;
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3 Hybrid Motor

Ground1

Resistor1

tVoltage1

Inductor1

EMF1

Inertia1 SpringDamper1 Inertia2
tau

Torque1

Diagram : HybridMotor

The corresponding model code is shown below.

model HybridMotor
   Modelica.Electrical.Analog.Basic.Ground 
Ground1;
   Modelica.Electrical.Analog.Basic.Resistor 
Resistor1;
   
Modelica.Electrical.Analog.Sources.ConstantVol
tage ConstantVoltage1;
   Modelica.Electrical.Analog.Basic.Inductor 
Inductor1;
   Modelica.Electrical.Analog.Basic.EMF EMF1;
   Modelica.Mechanics.Rotational.Inertia 
Inertia1;
   Modelica.Mechanics.Rotational.SpringDamper 
SpringDamper1(d=0.3,c=1);
   Modelica.Mechanics.Rotational.Inertia 
Inertia2;
   Modelica.Mechanics.Rotational.Torque 

96 Example 3 : Hybrid DC Motor



Torque1;
   Modelica.Blocks.Sources.Step 
Step1(startTime=20,height=-1);
   
equation
   connect(Ground1.p, ConstantVoltage1.n);
   connect(ConstantVoltage1.p, Resistor1.p);
   connect(Inductor1.n, EMF1.p);
   connect(ConstantVoltage1.n, EMF1.n);
   connect(EMF1.flange_b, Inertia1.flange_a);
   connect(Inertia1.flange_b, 
SpringDamper1.flange_a);
   connect(SpringDamper1.flange_b, 
Inertia2.flange_a);
   connect(Resistor1.n, Inductor1.p);
   connect(Step1.y, Torque1.tau);
   connect(Torque1.flange_b, 
Inertia2.flange_b);
end HybridMotor;

4 Simulation
We simulate the model for 40 seconds:  (Note that you can also perform simulation and plotting by
using Simulation Center from the Model Editor)

Simulate@HybridMotor, 8t, 0, 40<D;

The  signals  are  plotted  using  the  PlotSimulation  command.  The  constant  voltage  signal
(ConstantVoltage1.v)  and  the  angular  velocity  of  the  outgoing  axis  (Inertia2.w)  are
plotted below:
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PlotSimulation@
8ConstantVoltage1.v@tD, Inertia2.w@tD<, 8t, 0, 40<D
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We can see that the outgoing axis spins up to about 1 rad/s. Then at 20 seconds the counteracting
torque is applied on the outgoing axis and the axis start to spin down to zero.

We can  also  plot  the  two rotational  speeds  (Inertia1.w  and  Inertia2.w)  in  the  same plot,
showing the weakness of the axis:
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PlotSimulation@
8Inertia1.w@tD, Inertia2.w@tD<, 8t, 0, 40<D
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Plotting  the  current  in  the  electrical  circuit  shows  that  the  current  increases  to  about  1  Ampere
when the torque is applied:
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PlotSimulation@EMF1.i@tD, 8t, 0, 40<D
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We have now illustrated how a model can be used in different ways without the need to change the
model  structure.  The  acausality  can  be  useful  when  you  want  to  know  which  input  signal  to  use
when a certain output signal is wanted.
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MathModelica® System 
Designer Professional

Electric Circuit
© MathCore Engineering AB

1 Abstract
This  notebook  illustrates  how  a  MathModelica  System  Designer  Professional  model  may  be
developed  directly  within  a  Mathematica  notebook.  First  a  superclass  of  elements  with  two
electrical  pins  is  modeled.  Then  an  ideal  electrical  resistor,  a  capacitor,  an  inductor,  and  a  sine
wave voltage source are modeled, all inheriting the superclass. Before the components are used to
connect an entire electrical circuit a ground element is also modeled. Finally the circuit is simulated
and several plots from the simulation are presented.

Note  that  models  can  also  be  developed  in  the  model  editor  using  drag-and-drop.  See  the
Introductory Examples Examples of the model editor for more information on how to do this.

2 Initialization
To  be  able  to  use  MathModelica  System  Designer  within  Mathematica  we  need  to  load  the
MathModelica package.

Needs@"MathModelica`"D;
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Electric Circuit

We will develop the above model from scratch to illustrate how Modelica models can be built. The
Introductory  Examples  document  illustrates  how this  model  can  be  modeled  using  drag-and-drop
with ready-made components.

3.1 Modeling Electrical Components
First a superclass of elements with two electrical pins is modeled. Then an ideal electrical resistor,
a capacitor, an inductor, and a sine wave voltage source are modeled, all inheriting the superclass.

3.1.1 Voltage, Current

The Modelica language allows us to define new types by extending already existing types. Here we
will  define  a  new  type  called  Voltage,  and  another  called  Current.  Using  these  instead  of  just
declaring variables as Reals will make it easier for the user to interpret results.

type Voltage = Real(unit="V");

type Current = Real(unit="A");
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Pin

Before  we  begin  writing  models  for  the  electrical  components,  we  must  first  identify  the
appropriate connector for these components. The connector, called Pin, identifies the two quantities
associated with a connection point in electrical circuits, namely voltage and current.

connector Pin
   Voltage v;
   flow Current i;
end Pin;

An important thing to note about this connector is the flow qualifier in front  of the current i.  The
flow  qualifier  identifies  quantities  that  sum  up  to  zero  in  a  connection  point  according  to
kirchhoff's first law. Variables that are declared without this qualifier are set equal at a connection
point, i.e. they follow kirchhoffs second law.

3.1.3 TwoPin

Furthermore  the  electrical  components  we  will  define  share  a  few  other  common  properties,
namely: 

1. They have one positive, and one negative pin
2. The voltage level over the component equals the voltage difference between these pins
3. The current going in and out of the component sums up to zero

Therefore we define a superclass with these common properties and we also add a help variable for
the current in order to make it easier to analyze results.

model TwoPin "Superclass of elements with two 
electrical pins"
   Pin p, n;
   Voltage v;
   Current i;
equation
   v = p.v-n.v;
   0 = p.i+n.i;
   i = p.i;
end TwoPin;
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Resistor

A resistor is a TwoPin that obeys Ohm's law

v = R*i

This  component  can  be  defined  by  extending  the  TwoPin  superclass  and  adding  the  desired
equation.

model Resistor "Ideal electrical resitor"
   extends TwoPin;
   parameter Real R(unit="ohm") "Resistance";
equation
   R*i = v;
end Resistor;

3.1.5 Capacitor

A capacitor can be defined in a similar way as we defined the resistor.

model Capacitor "Ideal electrical capacitor"
   extends TwoPin;
   parameter Real C(unit="F") "Capacitance";
equation
   der(v) = i/C;
end Capacitor;

3.1.6 Inductor

An inductor can also be defined.

model Inductor "Ideal electrical inductor"
   extends TwoPin;
   parameter Real L(unit="H") "Inductance";
equation
   L*der(i) = v;
end Inductor;
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VsourceAC

In a similar fashion we define a voltage source with default amplitude 220 V and default frequency
50 Hz.

model VsourceAC "Sine-wave voltage source"
   extends TwoPin;
   parameter Voltage VA=220 "Amplitude [V]";
   parameter Real f=50 "Frequency [Hz]";
protected
   constant Real PI=Modelica.Constants.pi;
equation
   v = VA*sin(((2*PI)*f)*time);
end VsourceAC;

3.1.8 Ground

Finally all electrical circuits need a ground.

model Ground "Ground"
   Pin p;
equation
   p.v = 0;
end Ground;

3.2 Modeling the Electrical Circuit
Having  defined  all  components  we  can  now  model  the  circuit.  This  is  done  by  declaring  the
components and then connecting them using connect statements.

model Circuit
   Resistor resistor1(R=10);
   Capacitor capacitor1(C=0.01);
   Resistor resistor2(R=100);
   Inductor inductor1(L=0.1);
   VsourceAC sineVoltage1;
   Ground ground1;
equation

Example 4 : Electric Circuit 105



   connect(sineVoltage1.p, resistor1.p);
   connect(resistor1.n, capacitor1.p);
   connect(capacitor1.n, sineVoltage1.n);
   connect(resistor1.p, resistor2.p);
   connect(resistor2.n, inductor1.p);
   connect(inductor1.n, capacitor1.n);
   connect(sineVoltage1.n, ground1.p);
end Circuit;

3.3 Simulating the Circuit
First simulate the model with the default initial values and parameter settings in the range 0 § t §1. 

Simulate@Circuit, 8t, 0, 1<D;

Let us plot the current in the inductor.
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PlotSimulation@inductor1.i@tD, 8t, 0, 0.2<D
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The  default  initial  value  for  L.i=0.  Setting  another  initial  value  is  done  by  giving  a  list  of  equal
statements for the option InitialValues in Simulate.

Simulate@Circuit, 8t, 0, 1<,
InitialValues −> 8inductor1.i m 1<D;

A plot shows the result.
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PlotSimulation@inductor1.i@tD, 8t, 0, 0.2<D
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Setting parameter values is done in the same way for the option ParameterValues.

Simulate@Circuit, 8t, 0, 1<,
ParameterValues −> 8resistor1.R m 15, resistor2.R m 15<,
InitialValues → 8inductor1.i m 1<D;

Another plot shows the new result.
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PlotSimulation@inductor1.i@tD, 8t, 0, 0.2<D
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3.4 Comparing results
As  mentioned  in  the  example  above  the  electrical  circuit  can  be  modeled  with  simple  drag-and-
drop using the model editor. Actually the model is available in the Introductory Examples package.
We can print its definition by using the GetDefinition command. 
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GetDefinition@IntroductoryExamples.ComponentBased.
ElectricCircuit, ShowAnnotations → FalseD

model ElectricCircuit
Modelica.Electrical.Analog.Sources.SineVoltage
sineVoltage1;
Modelica.Electrical.Analog.Basic.Ground ground1;
Modelica.Electrical.Analog.Basic.Resistor
resistor1HR=10L;
Modelica.Electrical.Analog.Basic.Capacitor
capacitor1HC=0.01L;
Modelica.Electrical.Analog.Basic.Inductor
inductor1HL=0.1L;
Modelica.Electrical.Analog.Basic.Resistor
resistor2HR=100L;

equation
connectHsineVoltage1.n,ground1.pL;
connectHresistor1.n,capacitor1.pL;
connectHinductor1.n,ground1.pL;
connectHresistor2.n,inductor1.pL;
connectHcapacitor1.n,ground1.pL;
connectHsineVoltage1.p,resistor1.pL;
connectHresistor2.p,resistor1.pL;

end ElectricCircuit;

As seen the model also contains some html code used for documentation. The actual model is seen
in  the  last  lines  and  is  similar  to  the  model  that  we  have  created.  The  difference  is  that  standard
Modelica components  are used instead of the components defined by us,  and annotations are also
added. These annotations contain the graphical information used and created by the model editor.

We  can  compare  the  results  between  the  two  models  by  storing  simulation  results  in  separate
variables.  Note  that  the  default  values  for  the  voltage  source  differ  between  the  models,  and
therefore  we  modify  these  in  the  simulation  command,  adding  modifications  for  the  parameter
values.
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nbCircuit = Simulate@Circuit, 8t, 0, 1<D;
meCircuit = Simulate@IntroductoryExamples.

ComponentBased.ElectricCircuit, 8t, 0, 1<,
ParameterValues → 8sineVoltage1.V m 220,

sineVoltage1.freqHz == 50<D;

The plots below show that the results are identical just as expected.

PlotSimulation@resistor1.v@tD,
8t, 0, 0.2<, SimulationResult → nbCircuitD
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PlotSimulation@resistor1.v@tD,
8t, 0, 0.2<, SimulationResult → meCircuitD
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MathModelica® System 
Designer Professional

MyPackage - a Modelica package
© MathCore Engineering AB

1 Abstract
This  notebook  intends to  show some of  the  basic  concepts  of  making packages  in  MathModelica
and using within statements. 

The most important thing to remember is that all cells which are intended to be in a package must
be of ModelicaInput type. These cell type is included in the MathModelica style sheet. A Modelica
cell can also be created using the MathModelica palette. 

The  within  statement  must  be  present  in  every  class  cell.  By using  within  statements in  this
way it is possible to evaluate one cell at a time and make sure that the right scope is set.

2 Initialization
To  be  able  to  use  MathModelica  System  Designer  within  Mathematica  we  need  to  load  the
MathModelica package.

Needs@"MathModelica`"D;

Example 5 : MyPackage − a Modelica package 113



Create Packages

3.1 MyPackage
We begin by defining the package structure. 

package MyPackage
package MySubPackage
end MySubPackage;
package SIunits = Modelica.SIunits;

end MyPackage;

3.2 MyPackage.MyModel_1
MyModel_1  is defined here.  Note the initial within  statement, stating that this model is within
MyPackage.  The  same goes  for  all  classes in  this  package.  This  makes it  possible  to  evaluate  a
cell and still make sure that the right scope is set. 

within MyPackage;
model MyModel_1
   Real x(start=1);
equation
   der(x) = -x;
end MyModel_1;

3.3 MyPackage.MyModel_2
MyModel_2  is defined here.  Note the initial within  statement, stating that this model is within
MyPackage. 
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within MyPackage;
model MyModel_2
   Real y(start = 2);
equation
   der(y) = -y;
end MyModel_2;

3.4 MyPackage.MyModel_3
MyModel_3  is defined here.  Note the initial within  statement, stating that this model is within
MyPackage. 

within MyPackage;
model MyModel_3
   Real y(start = 3);
equation
   der(y) = -y;
end MyModel_3;

3.5 MyPackage.MyModel_4
MyModel_4  is defined here.  Note the initial within  statement, stating that this model is within
MyPackage. 

within MyPackage;
model MyModel_4
   Real y(start = 4);
equation
   der(y) = -y;
end MyModel_4;

3.6 MyPackage.MySubPackage.MySubModel_1
MySubModel_1  is  defined  here.  Note  the  initial  within  statement,  stating  that  this  model  is
within MyPackage.MySubPackage. 
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within MyPackage.MySubPackage;
model MySubModel_1
Real z(start = 3);
equation
   der(z) = -z + 1;
end MySubModel_1;

4 Using the Package
We can look at the definition of MyPackage using the GetDefinition command. This will show the
entire package.

GetDefinition@MyPackageD
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package MyPackage
package MySubPackage

model MySubModel_1
Real zHstart=3L;

equation
derHzL=H−zL + 1;

end MySubModel_1;

end MySubPackage;

package SIunits= Modelica.SIunits;
model MyModel_1

Real xHstart=1L;
equation

derHxL=−x;
end MyModel_1;

model MyModel_2
Real yHstart=2L;

equation
derHyL=−y;

end MyModel_2;

model MyModel_3
Real yHstart=3L;

equation
derHyL=−y;

end MyModel_3;

model MyModel_4
Real yHstart=4L;

equation
derHyL=−y;

end MyModel_4;

end MyPackage;
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We can also simulate any model within the package and plot the result.

Simulate@MyPackage.MySubPackage.MySubModelÄ1, 8t, 0, 10<D

<SimulationData:
"MyPackage.MySubPackage.MySubModel_1" : : 80., 10.<
: 1007 data points : 0 events : 2 variables>

8z�, z<

The SimulationData object returned contains the variables z and z° .
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PlotSimulation@z@tD, 8t, 0, 10<D
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MathModelica® System 
Designer Professional

A Sample Optimization Problem
© MathCore Engineering AB

1 Abstract
This  notebook  is  an  example  of  how  the  powerful  scripting  language  of  Mathematica  can  be
utilized to solve non-trivial  optimization problems that contain dynamic simulations. First  we will
define a Modelica model of a linear actuator with spring-damped stopping followed by a first order
system.  Using  MathModelica  System  Designer  scripting  we  will  then  find  a  damping  for  the
translational spring-damper such that the step response is as "close" as possible to the step response
from the first order system.

2 Initialization

2.1 Loading packages
To  be  able  to  use  MathModelica  System  Designer  within  Mathematica  we  need  to  load  the
MathModelica package.

Needs@"MathModelica`"D
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Example
Consider the following model of a linear actuator with spring-damped stopping:

SlidingMass1 SpringDamper1 Fixed1IdealGearR2T1

Inertia1

SpringDamper2

Inertia2

tau
Torque1 Step1

Diagram : LinearActuator

Below is the corresponding model code: 

model LinearActuator
  Modelica.Blocks.Sources.Step step1;
  Modelica.Mechanics.Rotational.Torque torque1;
  Modelica.Mechanics.Rotational.Inertia inertia1(J=0.1);
  Modelica.Mechanics.Rotational.Inertia inertia2(J=0.1);
  Modelica.Mechanics.Rotational.SpringDamper springDamper2(c=15,d=2);
  Modelica.Mechanics.Rotational.IdealGearR2T idealGearR2T1;
  Modelica.Mechanics.Translational.SlidingMass slidingMass1(m=0.5);
  Modelica.Mechanics.Translational.SpringDamper springDamper1(c=20,d=3);
  Modelica.Mechanics.Translational.Fixed fixed1;
  
equation 
  connect(springDamper1.flange_b,fixed1.flange_b);
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  connect(slidingMass1.flange_b,springDamper1.flange_a);
  connect(idealGearR2T1.flange_b,slidingMass1.flange_a);
  connect(inertia2.flange_b,idealGearR2T1.flange_a);
  connect(springDamper2.flange_b,inertia2.flange_a);
  connect(inertia1.flange_b,springDamper2.flange_a);
  connect(torque1.flange_b,inertia1.flange_a);
  connect(step1.y,torque1.tau);
end LinearActuator;

This  model  is  available  from  the  IntroductoryExamples.Professional  package  delivered  with
MathModelica System Designer and we will use it in the rest of this example. 

3.1 Optimization
The  model  can  be  simulated  directly  in  Mathematica  using  the  Simulate  command  of
MathModelica  System Designer  Professional.  We simulate a  step response  and store  the  result  in
the variable res0:

Simulate@
IntroductoryExamples.Professional.LinearActuator,
8t, 0, 5<, ParameterValues → 8springDamper1.d m 2<D;
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PlotSimulation@slidingMass1.s@tD, 8t, 0, 5<D
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Suppose that we have some freedom in choosing the damping in the translational spring-damper. A
number of simulation runs show what kind of behavior we have for different values of the damping
d.  Table[  ]  is  used  in  Simulate[  ]to  make  simulations  for  damping  2  to  14,  with  a  step  of  2,  i.e.
seven simulations are performed.

res = Table@Simulate@IntroductoryExamples.Professional.
LinearActuator, 8t, 0, 4<, ParameterValues →

8springDamper1.d m q<D, 8q, 2, 14, 2<D;
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The simulation plot  shows that the first  simulation result  from this batch is the same as the result
we  obtained  previously,  which  is  to  be  expected  as  all  parameters  are  the  same  for  these  two
simulations.

PlotSimulation@slidingMass1.s@tD,
8t, 0, 4<, SimulationResult → res@@1DDD
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It is more intersting to show how the behavior differs depending on the damping.
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PlotSimulation@slidingMass1.s@tD,
8t, 0, 4<, SimulationResult → res,
Legend → False, PlotStyle → 8Sequence @@

Map@8Dashing@81, 0<D, Ó< &, $PlotSimulationColorsD<D
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Now  we  want  to  get  an  optimal  design  for  our  system.  We  make  sure  that  the  variable  y  is  not
present in the global context in Mathematica:

Clear@yD

Now assume that we would like to choose the damping d  so that the resulting system behaves as
closely as possible to the following first order system response:

res1 = NDSolve@
80.2 y'@tD + y@tD m 0.05, y@0D m 0<, 8y<, 8t, 0, 4<D;
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Plot@y@tD ê. res1, 8t, 0, 4<, PlotRange −> AllD
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More  interesting  perhaps  is  to  look  at  the  difference  between  the  desired  signal  and  the  step
response.
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Plot@Hy@tD ê. res1L − slidingMass1.s@tD ê.
ToInterpolationRules@res@@1DD, slidingMass1.sD,

8t, 0, 4<, PlotRange → AllD
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Now,  let  us  make  things  a  little  bit   more  automatic.  Simulate  and  compute  the  integral  of  the
square error from t = 0 to t = 4. We set the number of intervals to 1000 in order to get good enough
sample rate for NIntegrate.

res = Simulate@IntroductoryExamples.Professional.
LinearActuator, 8t, 0, 4<, NumberOfIntervals → 1000,

ParameterValues → 8springDamper1.d m 3<D;

NIntegrateA
First@Hy@tD ê. res1L − slidingMass1.s@tDD2, 8t, 0, 4<E

0.00016241
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We  define  a  function,  f(a),  doing  the  same  thing  as  above,  but  for  different  spring-damper
parameters d = a,

f@a_D := ModuleA8res, t<,

res = Simulate@IntroductoryExamples.Professional.
LinearActuator, 8t, 0, 4<, NumberOfIntervals → 1000,

ParameterValues → 8springDamper1.d m a<D;

NIntegrateAFirst@Hy@tD ê. res1L − slidingMass1.s@tDD2,

8t, 0, 4<EE

and tabulate several results for 2 § d = a § 10.

Table@8a, f@aD<, 8a, 2, 10, .5<D

882., 0.000317292<, 82.5, 0.000221338<,
83., 0.00016241<, 83.5, 0.000125242<,
84., 0.00010268<, 84.5, 0.0000898597<,
85., 0.0000840732<, 85.5, 0.0000836745<,
86., 0.0000874683<, 86.5, 0.0000945918<,
87., 0.00010442<, 87.5, 0.000116484<, 88., 0.00013042<,
88.5, 0.000145949<, 89., 0.000162822<,
89.5, 0.000180893<, 810., 0.000200016<<

The  tabulated  values  are  interpolated  using  an  interpolating  function  object.  The  default
interpolation order is 3.

fpre = Interpolation@%D;

128 Example 6 : A Sample Optimization Problem



Plot@fpre@aD, 8a, 2, 10<D
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The minimum value of a can be computed using FindMinimum:

FindMinimum@fpre@sD, 8s, 5<, PrecisionGoal → 4D

80.0000832623, 8s → 5.28674<<

Now let us simulate with the optimal parameter value

Simulate@IntroductoryExamples.
Professional.LinearActuator, 8t, 0, 4<,

ParameterValues → 8springDamper1.d m 5.28732<D;

A plot comparing the first order system and linear actuator model response together with a plot of
the squared error amplified with a factor 100.
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PlotA9slidingMass1.s@tD, y@tD ê. res1,

100 HslidingMass1.s@tD − Hy@tD ê. res1LL2=, 8t, 0, 4<E
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MathModelica® System 
Designer Professional

Frequency Analysis of Simulation Data
© MathCore Engineering AB

1 Abstract
This notebook is an example of how Mathematica  can be utilized for frequency analysis. First we
will  define  a  Modelica  model  of  a  weak  axis,  similar  to  what  is  described  in  the  introductory
examples  of  the  model  editor.  Next  we  will  develop  a  simple  Mathematica  program  to  perform
fourier analysis. 

2 Initialization
We  begin  by  loading  MathModelica  system  Designer.  This  is  done  by  evaluating  the  following
command:

Needs@"MathModelica`"D;

3 Frequency Analysis
The  aim of  this  example  is  to  take  a  model  and  show  how  Mathematica  can  be  used  to  analyze
simulation results. In this case we will do a frequency analysis on a weak axis model.
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The Model

tau
Torque1 Inertia1 Spring1 Inertia2 Spring2 Inertia3Pulse1

Consider a weak axis excited by a torque pulse train. The axis is modeled by three segments joined
by two torsion springs.  The model can easily be created in the model editor  (see the Introductory
Examples  documentation,  example  3,  for  a  detailed  explanation  on  how  to  do  this).  The  model
code is given below:

model WeakAxis
  Modelica.Mechanics.Rotational.Inertia 
inertia3;
  Modelica.Mechanics.Rotational.Inertia 
inertia1;
  Modelica.Blocks.Sources.Pulse 
pulse1(width=1, period=200);
  Modelica.Mechanics.Rotational.Inertia 
inertia2;
  Modelica.Mechanics.Rotational.Spring 
spring1(c=0.7);
  Modelica.Mechanics.Rotational.Torque 
torque1;
  Modelica.Mechanics.Rotational.Spring 
spring2(c=1);
equation 
  connect(inertia2.flange_b,spring2.flange_a);
  connect(spring1.flange_b,inertia2.flange_a);
  connect(torque1.flange_b,inertia1.flange_a);
  connect(spring2.flange_b,inertia3.flange_a);
  connect(pulse1.y,torque1.tau);
  connect(inertia1.flange_b,spring1.flange_a);
end WeakAxis;
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3.2 Simulation
When the model has been created and evaluated it can be simulated. We simulate the model for 200
seconds using the simulate command.

Simulate@WeakAxis, 8t, 0, 200<D

<SimulationData: "WeakAxis" : : 80., 200.<
: 1052 data points : 2 events : 74 variables>

8inertia1.a, inertia1.aÄstart, inertia1.φ�, inertia1.w�, ig
nertia1.flangeÄa.φ, inertia1.flangeÄa.τ, inertia1.fl
angeÄb.φ, inertia1.flangeÄb.τ, inertia1.initType, ig
nertia1.J, inertia1.φ, inertia1.phiÄstart, inertia1.s
tateSelection, inertia1.w, inertia1.wÄstart, inertia2
ia2.flangeÄa.φ, inertia2.flangeÄa.τ, inertia2.flange
Äb.φ, inertia2.flangeÄb.τ, inertia2.initType, inertg
ia2.J, inertia2.φ, inertia2.phiÄstart, inertia2.state
Selection, inertia2.w, inertia2.wÄstart, inertia3.a, i
nertia3.aÄstart, inertia3.φ�, inertia3.w�, inertia3.fl
angeÄa.φ, inertia3.flangeÄa.τ, inertia3.flangeÄb.φ,
nertia3.flangeÄb.τ, inertia3.initType, inertia3.J, in
ertia3.φ, inertia3.phiÄstart, inertia3.stateSelection
lse1.offset, pulse1.period, pulse1.startTime, pulse1.T
0, pulse1.TÄwidth, pulse1.width, pulse1.y, spring1.c,
pring1.flangeÄa.φ, spring1.flangeÄa.τ, spring1.flang
eÄb.φ, spring1.flangeÄb.τ, spring1.phiÄrel, spring1.p
hiÄrel0, spring1.τ, spring2.c, spring2.flangeÄa.φ, sg
pring2.flangeÄa.τ, spring2.flangeÄb.φ, spring2.flang
eÄb.τ, spring2.phiÄrel, spring2.phiÄrel0, spring2.τ,
orque1.bearing.φ, torque1.bearing.τ, torque1.flangeÄb

A SimulationData object is returned. This object contains all model parameters and variables, and
the  results  can  be  plotted  using  the  PlotSimulation  command.  In  this  case  we  plot  the  angular
velocity of the right-most axis segment, inertia3.w.
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PlotSimulation@8inertia3.w@tD<, 8t, 0, 200<D
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3.3 Analysis
We will use the built-in Fourier function to perform a frequency analysis. As this function takes a
list  rather  then  an  interpolating  function  as  argument,  we  sample  inertia3.w  with  a  sample
frequency 4Hz and store the result in a variable called data1.

data1 = Table@inertia3.w@tD, 8t, 0, 200, .25<D;

Then we remove the mean from data1, storing the result in data2.
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mean = Apply@Plus, data1D ê Length@data1D;

data2 = data1 − mean;

With this we can compute the absolute values of the discrete Fourier transform.

fdata1 = Abs@Fourier@data2DD;

We can then plot the 80 first points of data.

ListPlot@fdata1@@Range@80DDD, PlotRange −> All,
PlotStyle → 8Red, PointSize@0.015D<D
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The result shows two clear peaks at data point 30 and 52 respectively.
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8fdata1@@30DD, fdata1@@52DD<

812.5953, 0.334874<

3.4 Defining a Fourier plot function
To make it easier to do the same analysis on other models we will define a Mathematica  function
for  this.  As the obtained result showed the peaks for respective data points rather than frequency,
we  will  also  define  the  function,  FourierPlot,  as  it  scales  the  axes  such  that  amplitude  of
trigonometric components are plotted against frequency (Hz).

Now we  define a function that takes a simulation variable as input, samples the signal from tmin to
tmax with the sampling frequency Å1T , and plots the result as a function of frequency.

FourierPlot@signal_,
8t_, tmin_, tmax_<, T_, options___D :=

ModuleB8data1, n, mean, data2, fdata1, fdata2, f<,

data1 = Table@signal, 8t, tmin, tmax, T<D;
n = Length@data1D;
mean = Apply@Plus, data1D ê n;
data2 = data1 − mean;

fdata1 = 2 í n Abs@Fourier@data2DD;

fdata2 = Drop@fdata1, −Round@n ê 2.DD;
f = Range@0, 1 ê H2 ∗ TL, H1 ê H2 TL − 0L ê Round@n ê 2.DD;
ListPlot@Transpose@8f, fdata2<D, optionsD

F

We make a simple example to verify the function.
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FourierPlot@Sin@2 π tD + 5 Sin@2 π 1.55 tD,
8t, 0, 200<, 0.25, PlotRange → All, PlotJoined → TrueD
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3

3.5 Using FourierPlot
We take the same variable as earlier, namely inertia3.w, and sample it with a sample frequency of

1
0.5 Hz to be sure that we fulfill the sampling theorem, and use the newly defined function to plot the

result.
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FourierPlot@inertia3.w@tD, 8t, 0, 200<, 0.5,
PlotRange → All, PlotJoined → True, PlotStyle → RedD
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We see that the frequency tops are at 0.14 Hz and 0.26 Hz respectively. 

For  this  simple  example  it  can  actually  be  shown  that  the  frequencies  of  the  eigenmodes  of  the
system are given by the imaginary parts of the eigenvalues of the following matrix (c1and c2are the
spring constants).
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1

2 π
 EigenvaluesB

0 1 0 0 0 0
−c1 0 −c1 0 0 0

0 0 0 1 0 0
−c1 0 −c1 − c2 0 −c2 0

0 0 0 0 0 1
0 0 −c2 0 −c2 0

ê. 8c1 → 0.7, c2 → 1<F êê Chop

80.256077 Ç, −0.256077 Ç, 0.143344 Ç, −0.143344 Ç, 0, 0<

Which fits very well with the peaks in the diagram above.
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MathModelica® System 
Designer Professional

Systems with Events
© MathCore Engineering AB

1 Abstract
This notebook illustrates how events can be handled using When and If statements.

2 Initialization
To  be  able  to  use  MathModelica  System  Designer  within  Mathematica  we  need  to  load  the
MathModelica package.

Needs@"MathModelica`"D;

3 Bouncing Ball
A  simple  example  of  event  handling  is  the  bouncing  ball.  We  define  a  model  where  the  ball  is
dropped  from the  height  h  at  a  velocity v.  The ball  bounces  whenever  the ball  center is  less  than
zero.

model BouncingBall 
  parameter Real e=0.7 "coefficient of 
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restitution";
  parameter Real g=9.81 "gravity 
acceleration";
  Real h(start=1) "height of ball";
  Real v "velocity of ball";
  Boolean flying(start=true) "true, if ball 
is flying";
  Boolean impact;
  Real v_new;
  discrete Integer n_bounce(start=0);
equation   
  impact = h <= 0.0;
  der(v) = if flying then -g else 0;
  der(h) = v;

  when {h <= 0.0 and v <= 0.0,impact} then
    v_new = if edge(impact) then -e*pre(v) 
else 0;
    flying = v_new > 0;
    reinit(v, v_new);
    n_bounce=pre(n_bounce)+1;
  end when;

end BouncingBall;

Simulate the system. The simulation data is returned as a SimulationData object.

Simulate@BouncingBall, 8t, 0, 3<D

<SimulationData: "BouncingBall" : : 80., 3.< :
1469 data points : 56 events : 10 variables>

8h�, v�, e, flying, g, h, impact, nÄbounce, v, vÄnew<

A plot of the height looks like this:
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PlotSimulation@h@tD, 8t, 0, 3<, PlotRange → AllD
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A plot of the velocity looks like this.
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PlotSimulation@v@tD, 8t, 0, 3<D
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The discrete variable n_bounce contains the number of bounces before the ball lies on the ground.
Note:  Modelica  variables  containing  underscores  ('_')  are  in  Mathematica  represented  using  the
special  character  Ä.  (underbracket).  It  can  be  entered  using  the  command  sequence
Çu@d ,
i.e. <Escape> + 'u' + '[' + <Escape>. 
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nÄbounce@3D

29.

Change  the  coefficient  of  restitution,  e,  to  0.8  and  the  horizontal  startvelocity,  h,  to  1.5.  This  is
done by the ParameterValues and InitialValues option.

SimulateBBouncingBall, 8t, 0, 6<,

ParameterValues → 8e m 0.8<, InitialValues → :h m
3

2
>F;

Plot the result.
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PlotSimulation@8h@tD, v@tD<, 8t, 0, 6<D
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BouncingBall
h@tD
v@tD

nÄbounce@6D

46.
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4 Pulse Train

model PulseTrain "Model of a pulse train"
   Real x;
   Real pi=Modelica.Constants.pi;
equation
   x = if sin((2*pi)*time) > 0 then
      1
   else
      0;
end PulseTrain;

Simulate the system.

res = Simulate@PulseTrain,
8t, 0, 3<, NumberOfIntervals → 500D;
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PlotSimulation@x@tD, 8t, 0, 3<D
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MathModelica® System 
Designer Professional

Steady State Linear Vibrations
© MathCore Engineering AB

1 Abstract
This  Notebook  examines  the  behavior  of  a  coupled  two-mass  system  with  damping,  using
Mathematica  and  MathModelica  System  Designer.   The  behavior  of  the  system is  examined  for
different values of the parameters and the conditions for isolation of the first mass are derived.

Consider  two masses coupled  by a spring  and a dashpot.   The first
mass is coupled to a wall by a second spring. 

This example is based on and exmaple by John M. Novak, Wolfram Research, Inc.

2 Initialization
To  be  able  to  use  MathModelica  System  Designer  within  Mathematica  we  need  to  load  the
MathModelica package.

Needs@"MathModelica`"D
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3 Model
A  model  of  two  sliding  masses  with  a  string  and  dashpot  between  them  and  the  first  mass
connected to a wall by a second spring can be made in the model editor by using components from
the Modelica.Mechanics.Translational package. An external force acts on the first mass.

We also draw a suitable icon using the model editor.

The Modelica text for this model is (evaluate cell below to add the model to MathModelica) 

model TwoMassSystem "A model of two sliding 
masses and a string damper."
  import 
Modelica.Mechanics.Translational.SlidingMass;
  import 
Modelica.Mechanics.Translational.SpringDamper;
  import 
Modelica.Mechanics.Translational.Spring;
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  import 
Modelica.Mechanics.Translational.Force;
  import 
Modelica.Mechanics.Translational.Fixed;
  import Modelica.Blocks.Interfaces.RealInput;
  
  SpringDamper sd;
  SlidingMass m1;
  SlidingMass m2;
  Force force;
  Fixed wall;
  Spring s;
  input RealInput a;

  
equation 
  connect(a,force.f);
  connect(wall.flange_b,s.flange_a);
  connect(s.flange_b,m1.flange_a);
  connect(m1.flange_a,force.flange_b);
  connect(sd.flange_b,m2.flange_a);
  connect(m1.flange_b,sd.flange_a);
end TwoMassSystem;

To test it we create another model and connect the input force to a Sine curve:
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model TwoMassSystemTest "A model of two 
sliding masses and a string damper."
  parameter Modelica.SIunits.Frequency w=1;
  parameter Real A=1;
  Modelica.Blocks.Sources.Sine 
sine1(amplitude=A,freqHz=w/(2*Modelica.Constan
ts.pi));
  TwoMassSystem system;

equation 
  connect(sine1.y,system.a);
end TwoMassSystemTest;

We can now simulate the model using the Simulate command.
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Simulate@TwoMassSystemTest, 8t, 0, 100<D

<SimulationData: "TwoMassSystemTest" : : 80., 100.<
: 1012 data points : 0 events : 60 variables>

8A, sine1.amplitude, sine1.freqHz, sine1.offset, sine1.pg
hase, sine1.startTime, sine1.y, system.a, system.forg
ce.f, system.force.flangeÄb.f, system.force.flangeÄb

system.m1.flangeÄb.s�, system.m1.flangeÄb.f, system.mg
1.flangeÄb.s, system.m1.L, system.m1.m, system.m1.s, s
ystem.m1.v, system.m2.a, system.m2.s�, system.m2.v�,

system.m2.flangeÄa.s�, system.m2.flangeÄa.f, system.mg
2.flangeÄa.s, system.m2.flangeÄb.f, system.m2.flangg
eÄb.s, system.m2.L, system.m2.m, system.m2.s, system.m
2.v, system.s.c, system.sd.c, system.sd.d,

system.sd.sÄrel�, system.sd.f, system.sd.flangeÄa.s�, sg
ystem.sd.flangeÄa.f, system.sd.flangeÄa.s,

system.sd.flangeÄb.s�, system.sd.flangeÄb.f, system.sg
d.flangeÄb.s, system.sd.sÄrel, system.sd.sÄrel0, syg
stem.sd.vÄrel, system.s.f, system.s.flangeÄa.f, systg
em.s.flangeÄa.s, system.s.flangeÄb.f, system.s.flang
eÄb.s, system.s.sÄrel, system.s.sÄrel0, system.wall.
langeÄb.f, system.wall.flangeÄb.s, system.wall.s0, w<

If  we  plot  the  position  of  the  two  masses  we  see  that  eventually  the  simulation  reaches  a  steady
state, with a periodic solution for the two positions.
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PlotSimulation@
8Hsystem.m1.sL@tD, Hsystem.m2.sL@tD<, 8t, 0, 100<D
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4 Equations
To  extract  equations  from  Modelica  models  you  can  use  the  ModelEquations  function.  It  will
return  the  equations,  variables   and  parameters  of  a  Modelica  model  for  further  use  in
Mathematica.  This  can   be  used  when  performing  steady  state  analysis,   using  Mathematica's
NDSolve to solve the system, or as input to other application packages to perform control design or
optimization, for example.
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Extract the equations from the model

8eqns, ieqns, states, algvars, outputs, inputs, param< =

ModelEquations@TwoMassSystemD;

Assume  the  system  is  driven  by  an  external  periodic  driving  force  of  frequency  omega  and
magnitude p0. We therefore replace the external force variable, a[t] with a periodic signal using the
euler formula.
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eqns2 = eqns ê. a@tD → p0 Exp@I omega tD

:ÆÇ ω t p0 m Hforce.fL@tD,
Hsd.fL@tD m sd.c H−sd.sÄrel0 + Hsd.sÄrelL@tDL +

sd.d Hsd.der@sÄrelDL@tD,
Hsd.sÄrelL@tD m Hm2.flangeÄa.sL@tD − Hsd.flangeÄa.sL@tD,
m1.m Hm1.aL@tD m Hsd.fL@tD + Hm1.flangeÄa.fL@tD,

Hforce.flangeÄb.sL@tD m −
m1.L

2
+ Hm1.sL@tD,

Hsd.flangeÄa.sL@tD m
m1.L

2
+ Hm1.sL@tD,

m2.m Hm2.aL@tD m −Hsd.fL@tD,

Hm2.flangeÄa.sL@tD m −
m2.L

2
+ Hm2.sL@tD,

Hm2.flangeÄb.sL@tD m
m2.L

2
+ Hm2.sL@tD,

Hs.fL@tD m s.c H−s.sÄrel0 + Hs.sÄrelL@tDL,
Hs.sÄrelL@tD m −wall.s0 + Hforce.flangeÄb.sL@tD,
−Hforce.fL@tD + Hs.fL@tD + Hm1.flangeÄa.fL@tD m 0,
Hm1.vL@tD m Hm1.sL�@tD, Hm1.aL@tD m Hm1.vL�@tD,
Hm2.vL@tD m Hm2.sL�@tD, Hm2.aL@tD m Hm2.vL�@tD,
Hm2.flangeÄa.der@sDL@tD m Hm2.sL�@tD,
Hsd.flangeÄa.der@sDL@tD m Hm1.sL�@tD,
Hsd.der@sÄrelDL@tD m

Hm2.flangeÄa.der@sDL@tD − Hsd.flangeÄa.der@sDL@tD>

Modelica does not allow second order derivatives and therefore requires additional state variables,
thus the model has four states.

states

8Hm2.vL@tD, Hm2.sL@tD, Hm1.vL@tD, Hm1.sL@tD<
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8Hm2.vL@tD, Hm2.sL@tD, Hm1.vL@tD, Hm1.sL@tD<

8Hm2.vL@tD, Hm2.sL@tD, Hm1.vL@tD, Hm1.sL@tD<

We  eliminate  all  algebraic  equations  since  they  are  not  interesting  for  further  analysis.  We  also
observe  that  the  states are  coupled  and we are  only interested in the positions (m1.s and m2.s) in
our analysis. We can therefore elliminate m1.v and m2.v by a simple transformation.

eqns3 = Eliminate@eqns2, algvarsD ê.
8Hm1.vL → Hm1.sL', Hm2.vL → Hm2.sL'<

2 s.c wall.s0 m −2 ÆÇ ω t p0 − m1.L s.c − 2 s.c s.sÄrel0 +
m1.L sd.c + m2.L sd.c + 2 sd.c sd.sÄrel0 +
2 s.c Hm1.sL@tD + 2 sd.c Hm1.sL@tD − 2 sd.c Hm2.sL@tD +
2 sd.d Hm1.sL�@tD − 2 sd.d Hm2.sL�@tD + 2 m1.m Hm1.sL��@tD &&

2 m2.m Hm2.sL��@tD m m1.L sd.c + m2.L sd.c +
2 sd.c sd.sÄrel0 + 2 sd.c Hm1.sL@tD −
2 sd.c Hm2.sL@tD + 2 sd.d Hm1.sL�@tD − 2 sd.d Hm2.sL�@tD

The parameters from the model are given as a list of replacements

param

8sd.sÄrel0 → 0, sd.c → 1, sd.d → 1, m1.L → 0, m1.m → 1,
m2.L → 0, m2.m → 1, wall.s0 → 0, s.sÄrel0 → 0, s.c → 1<

The  parameters  we  are  interested  in  are  the  damping,  d,  the  first  spring  constant,  k1,  the  second
spring constant, k2, and the two masses m1 and m2, therefore we build replacement rules for these
to get more appropriate names.

param2 =

8s.c → k1, sd.d → d, sd.c → k2, m2.m → m2, m1.m → m1<;
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We  simplify  our  equations  by  applying  the  parameter  rules  which  results  in  an  equation  system
with two equations and two states.

eqns4 = eqns3 ê. param2 ê. param

0 m −2 ÆÇ ω t p0 + 2 k1 Hm1.sL@tD +
2 k2 Hm1.sL@tD − 2 k2 Hm2.sL@tD + 2 d Hm1.sL�@tD −
2 d Hm2.sL�@tD + 2 m1 Hm1.sL��@tD &&

2 m2 Hm2.sL��@tD m 2 k2 Hm1.sL@tD − 2 k2 Hm2.sL@tD +
2 d Hm1.sL�@tD − 2 d Hm2.sL�@tD

For a steady-state solution,  m1.s and m2.s must have a periodic solution with the same frequency
as the driving force, as we saw in the simulation above.
Therefore we replace m1.s and m2.s with a similar periodic solution as for a[t] previously.

eqns5 = eqns4 ê. 8m1.s → Hu1 Exp@I omega ÓD &L,
m2.s → Hu2 Exp@I omega ÓD &L<

0 m −2 ÆÇ ω t p0 + 2 ÆÇ ω t k1 u1 + 2 ÆÇ ω t k2 u1 + 2 Ç d ÆÇ ω t ω u1 −

2 ÆÇ ω t m1 ω2 u1 − 2 ÆÇ ω t k2 u2 − 2 Ç d ÆÇ ω t ω u2 &&

−2 ÆÇ ω t m2 ω2 u2 m 2 ÆÇ ω t k2 u1 + 2 Ç d ÆÇ ω t ω u1 −

2 ÆÇ ω t k2 u2 − 2 Ç d ÆÇ ω t ω u2

where u1 and u2 are complex amplitudes.  

As the amplitudes are independent of time, t, the equations can be further simplified by choosing t
= 0.

eqns6 = eqns5 ê. 8t → 0<

0 m −2 p0 + 2 k1 u1 + 2 k2 u1 +
2 Ç d ω u1 − 2 m1 ω2 u1 − 2 k2 u2 − 2 Ç d ω u2 &&

−2 m2 ω2 u2 m 2 k2 u1 + 2 Ç d ω u1 − 2 k2 u2 − 2 Ç d ω u2
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The simplifications above make it possible to solve the equations for u1 and u2

ans = First@Solve@eqns6, 8u1, u2<DD

9u1 → −IIk2 + Ç d ω − m2 ω2M p0M ë I−k1 k2 − Ç d k1 ω + k2 m1 ω2 +
k1 m2 ω2 + k2 m2 ω2 + Ç d m1 ω3 + Ç d m2 ω3 − m1 m2 ω4M,

u2 → −HHk2 + Ç d ωL p0L ë I−k1 k2 − Ç d k1 ω + k2 m1 ω2 +
k1 m2 ω2 + k2 m2 ω2 + Ç d m1 ω3 + Ç d m2 ω3 − m1 m2 ω4M=

We have now reached an analytic solution for the amplitudes of the oscillating masses (u1 and u2)
given the damping coefficient, d, the two masses, m1, m2 and the spring constant k2. This solution
will in the next section be used for different kinds of analysis.

5 Behavior of the System
The  symbolic  solution  encapsulates  all  the  information  about  the  steady  state  dynamics  of  the
system.  However, it is difficult to see immediately the consequences of these equations.

5.0.1 Normalized Displacement
For use in the rest of this analysis, it is convenient to define a normalized displacement.

nu1@omega_, d_, m1_, m2_, k2_D =

u1 ê. ans ê. 8p0 → 1, k1 → 1< êê Factor;

nu2@omega_, d_, m1_, m2_, k2_D =

u2 ê. ans ê. 8p0 → 1, k1 → 1< êê Factor;

5.1 No Damping Force: Resonance
What is the behavior of the system when the damping term is zero?  Plot the amplitude of the first
displacement as a function of frequency.  The remaining parameters are chosen to be unity, that is,
all equal to one. 
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Plot@Abs@nu1@omega, 0, 1, 1, 1DD, 8omega, 0, 2<,
AxesLabel −> 8omega, Abs@u1D<, PlotRange −> 80, 10<D
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There are two resonances in this system. These occur when the denominator of u1 is zero.

Denominator@nu1@omega, 0, k2, m1, m2DD == 0

−m2 + m1 ω2 + k2 m2 ω2 + m1 m2 ω2 − k2 m1 ω4 m 0

This  polynomial  equation  can  be  solved  for  the  exact  roots.   For  brevity,  only  the  first  root  is
shown.

Solve@%, omegaD êê First

:ω → −

1
k2

+ m2
k2

+ m2
m1

− −4 k2 m1 m2+H−m1−k2 m2−m1 m2L2
k2 m1

2
>

It can also be numerically approximated for specific values of the parameters.

N@% ê. 8k2 → 1, m1 → 1, m2 → 1<D

8ω → −0.618034<

The behaviour of the system at the resonance frequency can be illustrated by a simulation.

Simulate@TwoMassSystemTest, 8t, 0, 50<,
ParameterValues → 8w == −0.6180339887498948`<D;

We see that the amplitude of the first mass is increasing over time.
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PlotSimulation@Hsystem.m1.s L@tD, 8t, 0, 50<D

10 20 30 40

−4

−2

2

4

6

TwoMassSystemTest
Hsystem.m1.sL@tD

5.2 The Behavior as the Mass Changes
It  is  instructive  to  observe  what  happens  as  the  mass  is  varied.  A  neat  way  to  do  this  is  to  use
Animate.
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Animate@
Plot@Abs@nu1@omega, 0, m1, 1, 1DD,
8omega, 0, 2<,
PlotRange → 80, 10<D,

8m1, 1, 5, .5<,
SaveDefinitions → True
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Using  manipulate  it  is  easy  to  create  interactive  plots  to  play  around  with.  By  pulling  the  sliders
you can test how the behavior of the resonances changes when varying damping, d, mass, m1 and
m2, as well as the spring constant, k.
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Manipulate@
Plot@Abs@nu1@omega, d, m1, m2, kDD,
8omega, 0, 2<,
AxesLabel −> 8omega, Abs@u1D<,
PlotRange −> 80, 10<D,

8d, 0, .4<, 8m1, 1, 5<, 8m2, 1, 5<, 8k, 1, 5<,
SaveDefinitions → True

D
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5.2.1 Conditions for Isolation of the First Mass
Notice that at omega=1, u1 is zero, for all values of  m1. That is, the mass does not respond to the
driving force and has been isolated.  This occurs when the numerator of the expression is zero.
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Solve@Numerator@nu1@omega, 0, m1, m2, k2DD m 0, omegaD

::ω → −
k2

m2
>, :ω →

k2

m2
>>
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5.3 The Behavior as a Damping Force Is Applied
A final  point  of interest  comes in observing the effect  of  varying the applied damping.  Again an
animation can be used to show the effect.  Note that the isolation of the first mass no longer occurs
once a damping term is introduced.
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Animate@
Plot@Abs@nu1@omega, d, 1, 1, 1DD,
8omega, 0, 2<,
PlotRange → 80, 10<D,

8d, 0, .4, .04<,
SaveDefinitions → True
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An alternative  is  to  use  a  three-dimensional  plot  to  show the  magnitude of  the  displacement  as  a
function of the frequency and the damping term.
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Manipulate@
Plot3D@Abs@nu1@omega, d, m1, m2, kDD,
8omega, 0, 2<,
8d, 0, .4<,
PlotRange −> 80, 10<,
AxesLabel → 8"omega", "d"<D,

8m1, 1, 5<, 8m2, 1, 5<, 8k, 1, 5<,
SaveDefinitions → True

D
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