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1. (a) Choosing
H(q) = 1

1 + a1q−1 + a2q−2

results in an ARX model.
(b) Since Re(τ) = λeδ(τ) and

Ry(τ) = E [y(t)y(t − τ)]
= E [(b1e(t − 1) + . . . + bN e(t − N))(b1e(t − τ − 1) + . . . + bN e(t − τ − N))]

we have Ry(τ) = 0 if |τ | > N − 1, i.e., M = N − 1.
(c) Since Φu(ω) = 1, Φe(ω) = 2 and Φue(ω) = 0 we have

Φy(ω) = |G(eiω)|2Φu(ω) + Φe(ω) = (1 + 0.5e−iω)(1 + 0.5eiω) + 2 = 3.25 + cos(ω)

(d) An OE model corresponds to a noise model H(q) = 1 but the prior information in this case
indicates that the true system has a more complex noise model H0(q) ̸= 1. Because of this
mismatch, an OE model estimated directly with the prediction-error method will usually be
(asymptotially) biased when data have been collected in closed loop. Hence, this combination
of model structure and method is not a good idea under these circumstances. Instead, it would
be useful to either consider other model structures such as ARX, ARMAX or BJ or to use the
two-stage method instead of the direct prediction-error approach to estimate an OE model.

2. (a) Let τ = βt, z = αy and v = u. Then

y(t) = 1
α

z(τ) = 1
α

z(βt)

Differentiating gives

dy(t)
dt

= 1
α

dz(βt)
dt

= β

α

dz(τ)
dτ

d2y(t)
dt2 = d

dt

(
dy(t)

dt

)
= d

dt

(
β

α

dz(βt)
dτ

)
= β2

α

d2z(τ)
dτ2

du(t)
dt

= β
dv(τ)

dτ

Inserting this in the original model and multiplying both sides with 3 gives

3β2

α
z′′ + 6β

α
z′ + 15

α
z = −3βv′ + 3v

We get the second model equation by selecting α = 3 and β = 2. Hence, the previous
simulation can be reused to give the step response also of the second model by scaling the
output with α = 3 and rescaling the time axis with β = 2.

(b) Stiff models are difficult because they contain both fast and slow modes, which makes it harder
to vary the step length without stability or accuracy problems. One simple way to quantify
the stiffness of a (linear) state-space model is to look at its eigenvalues. The eigenvalues of the
3 models are {−1, −2}, {−0.001, −1}, and {−1, −100}. The ratio between them is 2, 1000
and 100. Hence (i) is the least stiff model, followed by (iii), while (ii) is the stiffest.

(c) At stationarity, with a constant input, all signals are constant and their derivatives are zero.
This gives 0 = −2x3 and 0 = x1 + 3x3 + 2u, i.e., x3 = 0 and x1 = −2u. Inserting this and
y = x2 in the algebraic equation gives

0 = −2u + y − u ⇒ y = 3u

i.e., the static gain is 3.
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3. (a) Data is first imported into the GUI and split in two equal parts which are used as estimation
and validation data. The ARX, ARMAX, OE and BJ classes of models give all good fit
(> 75%). The one selected here a BJ(3,1,1,3,1) model which has the highest fit (83.9% for
validation data), although its residuals plot is not perfect. As comparison, an OE(4,4,1) model
is also included for comparison in some of the plots.

bj31131 =
Discrete-time BJ model: y(t) = [B(z)/F(z)]u(t) + [C(z)/D(z)]e(t)

B(z) = 0.259 (+/- 0.01631) z^-1 + 0.4954 (+/- 0.02223) z^-2
- 0.03493 (+/- 0.02454) z^-3

C(z) = 1 + 0.8684 (+/- 0.04612) z^-1
D(z) = 1 + 0.9532 (+/- 0.02832) z^-1
F(z) = 1 - 0.6586 (+/- 0.01031) z^-1 + 0.9263 (+/- 0.002202)

z^-2 - 0.6888 (0.009323) z^-3

Name: bj31131
Sample time: 1 seconds
Fit to estimation data: 86.82% (prediction focus)
FPE: 0.02728, MSE: 0.02642

Some comments:
∗ The parameter uncertainty is small, which can be seen by comparing the standard devia-

tions (in parentheses) with the parameter estimates.
∗ The simulated model output for validation data is shown for both models in Figure 1.

The BJ and OE models have similar model fit values, with a slight advantage for the BJ
model. The largest errors seem to be at the peaks, where there seems to be a saturation
in the true system which the linear models naturally cannot describe.

∗ The residuals from both models are shown in Figure 2 and are not perfectly white, but
the BJ model is clearly better than the OE model. Increasing the orders for the noise
model can improve the whiteness of the residuals, but due to the limitation given in the
exercise, we would then have to reduce the orders of the input-output part which results
in a worse model fit value. Hence, this choice is not recommended here.

∗ The Bode plot and the zeros and poles of the BJ(3,1,1,3,1) model are shown in Figure 3.
The uncertainty of the frequency response is small (small confidence intervals) which
indicates that the model can be trusted in the whole frequency range. Furthermore, the
confidence intervals for the poles and zeros are also relatively small and the poles are
clearly separated from the zeros, which indicates that the model order is not too high. All
poles are stable (within the unit circle).
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Figure 1: Simulated model output for the BJ(3,1,1,3,1) (green) and OE(4,4,1) (blue) models and measured
output (black).

(b) As can be seen by looking at y, the output of the system shows a saturation. This can
be modeled using a Wiener model (which is a special case of a Hammerstein-Wiener model).
Here, a Wiener model with four poles and zeros in the linear part and a piecewise linear output
nonlinearity with 3 units has been estimated and the simulated output for validation data is
shown in Figure 4. The model fit has increased to 88.2% from 83.9% for the BJ(3,1,1,3,1)
model. The estimated frequency response of the linear part and the output nonlinearity are
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Figure 2: Residuals for the BJ(3,1,1,3,1) (green) and OE(4,4,1) (blue) models.
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Figure 3: Bode plot (left) and zero and pole locations (right) for the BJ(3,1,1,3,1) model.

shown in Figure 5. The frequency response is very similar to the one for the BJ(3,1,1,3,1)
model and the nonlinearity is clearly a saturation.
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Figure 4: Simulated model output for the Wiener model (red) and measured output (black).

Figure 5: Bode plot and output nonlinearity for the estimated Wiener model.
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4. (a) Let θ =
(
b1 b2

)T . The predicted output for the given FIR model is

ŷ(t|θ) = b1u(t − 1) + b2u(t − 2)

and he prediction error can be written

ε(t, θ) = y(t) − ŷ(t) = (0.2 − b1)u(t − 1) + (0.4 − b2)u(t − 2) + 0.5u(t − 3) + w(t),

The cost function VN (θ) will converge to

V (θ) = E ε(t, θ)2 =
(
(0.2 − b1)2 + (0.4 − b2)2 + 0.25

)
Ru(0) + λw

+ 2 ((0.2 − b1)(0.4 − b2) + 0.5(0.4 − b2)) Ru(1) + (0.2 − b1)Ru(2)
+ 2(0.2 − b1)Rwu(1) + 2(0.4 − b2)Rwu(2) + Rwu(3).

(1)

when N → ∞. Here, we have Ru(0) = λu and Rw(0) = λw. Since Rwu(k) = 0 for all k and
Ru(τ) = δ(τ)λu, we can simplify (1) to

V (θ) =
(
(0.2 − b1)2 + (0.4 − b2)2 + 0.25

)
λu + λw

The minimum of V (θ) can be found from

∂V (b)
∂b

= 2λu

(
0.2 − b1
0.4 − b2

)
= 0

and the result is b̂1 = b1,0 = 0.2 and b̂2 = b2,0 = 0.4. This means that the estimated parameters
b1 and b2 converge to their true values even though the model is not unbiased since it cannot
describe the true system for any value of bi due to the missing term b3u(t − 3) in the model.

(b) A nonwhite w does not affect the parameter convergence since Rw(τ) for τ ̸= 0 is not present
in (1).

(c) A nonwhite u will change the asymptotic cost function to

V (θ) = E ε(t, θ)2 =
(
(0.2 − b1)2 + (0.4 − b2)2 + 0.25

)
Ru(0) + λw

+ 2 ((0.2 − b1)(0.4 − b2) + 0.5(0.4 − b2)) Ru(1) + (0.2 − b1)Ru(2)

and the minimum is now defined by

∂V (b)
∂b

=
(

2λu(0.2 − b1) − 2(0.4 − b2)Ru(1) − Ru(2)
2λu(0.4 − b2) − 2(0.2 − b1 − 0.5)Ru(1)

)
= 0

Since this equation is not solved by b1 = 0.2 and b2 = 0.4, we can conclude that the estimated
parameters do not converge to the true values in this case.

(d) With a nonwhite w and closed-loop data, all terms in (1) are in general nonzero. Hence,
similarly to the previous exercise, we can conclude that the estimated parameters will not
converge to their true values. This is in line with the general result about direct closed-
loop identification stating that the true system must be possible to describe with the model
structure for the parameter estimates to be asymptotically unbiased in closed loop.

5. (a) Differentiating equation (3) from the exam gives

ẋ1x3 + x1ẋ3 − ẋ2(2 + x3) − x2ẋ3 + 1 = 0

and inserting equations (1) and (2) from the exam results in

(1 + x2)x3 − ẋ2(2 + x3) + 1 = 0 (2)

Since ẋ3 = 0, we have that x3(t) = x3(0) = constant for all t. There are two cases to consider.

Case 1: If x3 ̸= −2, then one can solve (2) for ẋ2 which gives

ẋ2 = 1 + x3 + x2x3

2 + x3

and hence the index is 1.
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Case 2: If instead x3 = −2 then (2) becomes

x3 + x2x3 + 1 = 0

which can be differentiated again, leading to

−2ẋ2 = 0

and therefore the index is 2 in this case.
(b) Differentiating the algebraic constraint (4) from the exam gives

ẋ1x3 + x1ẋ3 − 2ẋ2 + 1 = 0

or
ẋ2 = 1

2 + (1 + x2)x3

2
In this case, the index is always 1, and there are no singular points. Hence, the index differs
from Case 2 above.
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