
Solution for the exam in the course “Modeling and Learning for Dynamical
Systems" (TSRT92) 2023-08-21

1. (a) Examples of information:
• what variables are affected by the input
• character of the response (oscillatory, unstable, damped, etc.)
• stationary gain
• time constant
• time delay
• settling time

(b) Let x1 = y and x2 = ẏ, this yields

ẋ1 = ẏ = x2

ẋ2 = ÿ = − ẏy3

1 + ẏy2 − y

1 + ẏy2u = − x3
1x2

1 + x2
1x2

− x1
1 + x2

1x2
u

(c) If we consider the test equation

ẋ = f(x) = λx

then we have:
xn = xn−1 + hf(xn) = xn−1 + hλxn

i.e.,
xn = 1

1 − hλ
xn−1 = 1

(1 − hλ)n
x0

which converges to zero (i.e., limt→∞ xn = 0) if |1−hλ| > 1, that is hλ lies outside
a disk of radius 1 centered at 1. In particular, then, the numerical method is stable
on the entire left half plane.
If we look at the system ẋ = 10x, then λ = 10, but in this case the system is
unstable, and to reproduce its qualitative behavior we have to impose that the
numerical method is also unstable, i.e., that |1 − 10h| < 1 or h < 0.2.

(d) The system is in a standard linear state space form

ẋ = Ax+Bu

y = Cx

Its time constants corresponds to the modes of the system, and can be computed
from the characteristic equation:

det(λI −A) =

λ+ 0.8 0 0
0 λ+ 1.3 0
0 0 λ+ 20

 = 0
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i.e., λ = {−0.8, −1.3, −20}. Since A diagonal, the modes are decoupled, and the
fastest dynamics is immediately recognized as the one of x3. Putting ẋ3 = 0 gives

x3(t) = 0.7u(t)

The requested approximation is therefore[
ẋ1
ẋ2

]
=

[
−0.8 0

0 −1.3

] [
x1
x2

]
+

[
1
2

]
u

y =
[
2 4

] [
x1
x2

]
+ 0.35u

2. For the model
y(t) = b1u(t− 1) + b2u(t− 2) + e(t)

the predictor is
ŷ(t|θ) = b1u(t− 1) + b2u(t− 2)

with
θ =

[
b1
b2

]
To compute the covariance of the estimates we use (12.93) of the book (Ljung, Glad,
& Hansson, 2021)

PN = E(θ̂N − θ0)(θ̂N − θ0)T ≈ 1
N
λeR̄

−1

where
R̄ = Eψ(t, θ)ψT (t, θ)

and ψ is the gradient

ψ(t, θ) = d

dθ
ŷ(t|θ) =

[
u(t− 1)
u(t− 2)

]

(a) If u is a white noise of variance r, then

R̄ = E

[
u(t− 1)
u(t− 2)

] [
u(t− 1) u(t− 2)

]
=

[
r 0
0 r

]

hence
PN ≈ 1

Nr
I2

(b) If u has covariance Ru(τ) = a|τ | then

R̄ =
[
1 a
a 1

]

hence
PN ≈ 1

N(1 − a2)

[
1 −a

−a 1

]
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(c) For case b):
E(b̂1 − b10)2 = 1

N(1 − a2)
and

E(b̂1 + b̂2 − b10 − b20)2 = E(b̂1 − b10)2 + 2E(b̂1 − b10)(b̂2 − b20) + E(b̂2 − b20)2

= 1
N(1 − a2) − 2a

N(1 − a2) + 1
N(1 − a2)

= 2
N(1 + a)

3. System identification exercise

(a) First of all notice that non-parametric identification suggests that the system trans-
fer function could have a resonance around 2 rad/sec, see Fig. 1 This is confirmed

10
-2

10
-1

10
0

10
1

10
2

           

10
-10

10
-5

10
0

10
5

y
1

Periodogram

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

10
-40

10
-20

10
0

10
20

u
1

10
-1

10
0

10
1

10
2

10
-4

10
-2

10
0

10
2

A
m

p
lit

u
d
e

10
-1

10
0

10
1

10
2

Frequency (rad/s)

-1000

-500

0

500

1000

P
h
a

s
e

 (
d

e
g

re
e

s
)

Figure 1: Periodogram to the left, ETFE to the right.

on the data themselves: look for example at the interval between 50 and 60 sec
("step response" shows oscillatory pattern), see Fig. 2.

(b) The ARX order selection tool of the System Id toolbox suggests ARX(10,8,6)
(fit of 41.7% to estimation data, blue plots). Much better can be done with less
parameters. For instance the two models OE(4,4,1) (fit of 51.3%, green) and
BJ(3,3,3,3,1) (fit of 50.6%, red) are shown below.

oe441 =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)

B(z) = -0.05118 z^-1 + 0.1607 z^-2 - 0.1692 z^-3 + 0.06074 z^-4

F(z) = 1 - 3.704 z^-1 + 5.177 z^-2 - 3.232 z^-3 + 0.759 z^-4

Sample time: 0.1 seconds

Parameterization:
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Figure 2: The input and output of the data.

Polynomial orders: nb=4 nf=4 nk=1
Number of free coefficients: 8

Status:
Estimated using PEM on time domain data "mydatade".
Fit to estimation data: 50.37% (simulation focus)
FPE: 0.832, MSE: 0.8058

bj33331 =
Discrete-time BJ model: y(t) = [B(z)/F(z)]u(t) + [C(z)/D(z)]e(t)

B(z) = 0.01912 z^-1 - 0.04211 z^-2 + 0.02622 z^-3

C(z) = 1 + 0.2141 z^-1 - 0.7591 z^-2 + 0.02683 z^-3

D(z) = 1 - 0.933 z^-1 - 0.9841 z^-2 + 0.9284 z^-3

F(z) = 1 - 2.913 z^-1 + 2.867 z^-2 - 0.9533 z^-3

Sample time: 0.1 seconds

Parameterization:
Polynomial orders: nb=3 nc=3 nd=3 nf=3 nk=1
Number of free coefficients: 12

Status:
Estimated using PEM on time domain data "mydatade".
Fit to estimation data: 94.16% (prediction focus)
FPE: 0.01171, MSE: 0.01116

The time-domain fit of the 3 models is shown in Fig. 3(a). The ARX model does
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not follow the oscillatory pattern (again look for instance at the interval 50 sec - 60
sec), hint that it does not reproduce the resonance correctly. The other two seem
better. This is confirmed by the frequency response plots, see Fig. 4(b). Residuals
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Figure 3: Black: true data. Blue: ARX. Green: OE. Red: BJ

are in Fig. 3(b), and show that for OE the residuals are not white, hence the model
is not adequate. Zeros/poles are in Fig. 4(a). Confidence intervals for ARX are
inadequate (too much overlap), hence the model is not a good one. The frequency
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(a) Pole-zero plot
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(b) Frequency responses

Figure 4: Blue: ARX. Green: OE. Red: BJ

responses are shown in Fig. 4(b) and confirm the presence of a resonance peak
around 2 rad/sec.
In summary of the 3 models considered here the only good one is BJ(3,3,3,3,1).
Notice how failure of OE to give white residuals is a hint that the transfer function
for the disturbance is a nontrivial one.
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4. (a) When E is non-singular it is invertible, hence one can write

ẋ = −E−1Fx+ E−1Gu = Ax+Bu

E is non-singular when detE ̸= 0 i.e., when α ̸= −1. Hence αo = −1.
(b) When α ̸= −1 the index is 0 (the system is an ODE not a DAE). When α = αo =

−1, then subtracting the first row and adding the second row to the third row one
gets 1 0 1

1 −1 0
0 0 0

 ẋ+

0 1 0
0 0 1
1 −1 1

x =

1 0
1 1
0 2

u (1)

Differentiating the third row and summing it to the rest1 0 1
1 −1 0
1 −1 1

 ẋ+

0 1 0
0 0 1
0 0 0

x =

1 0
1 1
0 0

u+

0 0
0 0
0 2

 u̇
the matrix in front of ẋ has full rank, hence the index in this case is 1.

(c) Considering again the transformation (1), from the third row we have x1−x2+x3 =
2u2, from which x3 can be obtained, and replaced in the two other equations, which
are as follows

ẋ1 + ẋ3 + x2 = u1

ẋ1 − ẋ2 + x3 = u1 + u2

leading to

ẋ2 = −x2 + u1 − 2u̇2

ẋ1 − ẋ2 = x1 − x2 + u1 + u2

replacing ẋ2 in the second equation with its expression from the first equation we
get the desired form, with

A1 =
[
1 −2
0 −1

]
, B1 =

[
2 −1
1 0

]
, B2 =

[
0 −2
0 −2

]
, C1 =

[
−1 1

]
, D1 =

[
0 2

]
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