
Solution for the exam in the course “Modeling and Learning for Dynamical
Systems" (TSRT92) 2023-01-05

1. (a) A model is never a true description of a system, but is developed to be useful
in solving a problem. This “usefulness” is called the validity of the model with
respect to the purpose in question. Model validation is thus establishing that a
particular model is valid. (2p)

(b) A simulation of a model is based on the mathematical description and uses nu-
merical methods to generate an approximate solution. The stability range of a
differential equation does not necessarily correspond to the stability range of the
numerical algorithm, which must be kept in mind during the simulation. (2p)

(c) The stationary points are given by ẋ = f(x0, u0) = 0. For this to be true, x2,0 =
x3,0 = 0. Furthermore, it must be true that sin x1 = 0, which is the case when
x1,0 = πn, where n is an integer. (2p)

(d) When solving the system for the internal variables, the higher the index of the
DAE, the more times the input signal is typically differentiated. Since differentia-
tion is sensitive to numerical errors, it then becomes difficult to get good accuracy
in the solution. (2p)

(e) The model he simulates probably has both fast and slow time constants, resulting
in a stiff system. Linus should concentrate on accurately modelling the dynamics
of the domain that he is mainly interested in and replace significantly slower and
faster dynamics with approximate relationships. (2p)

2. (a) There are a lot of questions and considerations that need to be taken into account
before designing your model. Here are a few of them, divided into three “phases”.
Experiment design: What are the goals of my model, what questions should it an-
swer? How much do I know in advance about my system? Do initial experiments
need to be done to find out the appropriate operating point, linearity/non-linearity,
sampling time, etc.? Which signals to measure, choice of input signal to excite the
system sufficiently, possible post-processing of data, is it an identification experi-
ment under feedback?
Model structure: Try with a simple model first, typically a low order linear black-
box model and see if it is good enough. Otherwise, you can think further about
whether linear/non-linear model structure is the best fit, tailored or black-box
model, parametric or non-parametric model and appropriate number of orders.
Validation: Is cross-validation possible due to sufficient data, over-fitting, simu-
lation/prediction, evidence of omission, confidence intervals for parameters? And
finally the most important question: is the model good enough for its purpose?
(3p)

(b) The least squares estimate is given by
(

b̂1
b̂2

)
=
(

1
N

∑
φ(t)φT (t)

)−1 1
N

∑
φ(t)y(t),

where the input variables are given by φ(t) =
(

u(t)
u(t − 1)

)
, u(t) =

{
2, t even
0, t odd
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and finally y(t) = 2 + ϵ for each t.

This results in the estimate
(

b̂1
b̂2

)
=
(

1/2 0
0 1/2

)(
1
1

)
(2 + ϵ) =

(
1 + ϵ/2
1 + ϵ/2

)
.

(7p)

3. (a) The estimate θ̂N will converge to θ∗ according to

θ∗ = lim
N→∞

θ̂N = arg min
θ

∫ π

−π
| G0(eiω) − G(eiω, θ) |2 Φu(ω)dω

where G0(eiω) is the true system, G(eiω, θ) is the model and Φu(ω) is the signal
spectrum. (The model of the controller is H∗(eiω) = 1 here.) Thus, the model
convergence is weighted with the input signal spectrum Φu(ω).
Since we have the right model structure, there are values θ0 such that G0(eiω) =
G(eiω, θ0). Since the input signal is white noise, Φu(ω) is constant and the result
above gives that θ∗ = θ0, that is â1 = −1.71, â2 = 0.79, b̂1 = 1 and b̂2 = 0.92. (2p)

(b) Due to the constant input signal, the parameter convergence will be focused en-
tirely on ω = 0 because Φu(ω) = 0 for ω ̸= 0. That is,

b̂ = arg min
b

| G0(ei0) − b |2= 1 + 0.92
1 − 1.71 + 0.79 ≈ 24

(2p)
(c) We start by loading the dataset and studying its time and frequency characteristics

(can also be done in the user interface by selecting Time plot or Data spectra):

load ex091012_4c
figure; plot(z1,z2,z3)
figure; plot(fft(z1),fft(z2),fft(z3))

We immediately see that the maximum amplitudes of the input signals are the
same, but that the spectrum differs. z1 contains all frequencies between 0–
31 rad/s, z2 approximately 0–2 rad/s and z3 approximately 1.5–7 rad/s. The spec-
trum of z1 is also significantly lower because the energy is distributed over more
frequencies.
The models are estimated with:

m1=oe(z1,[2 2 1]);
m2=oe(z2,[2 2 1]);
m3=oe(z3,[2 2 1]);

If you look at the coefficients, it is above all b1 and b2 that varies a lot, but even
the poles differ.
The models are evaluated above all in the frequency plane (Frequency resp) with
confidence intervals plotted:

G0=idpoly(1,[0 1 0.92],1,1,[1 -1.71 0.79],[],0.1); % the true system
figure; bode(G0,’k’,m1,’b’,m2,’g’,m3,’r’,’sd’,3); % 3 standard deviations
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Only amplitude curves shown here.

A bandwidth of 3 rad/s gives an approximate scan rate of 3 rad/s. It is then
important that we have good knowledge of the system around this frequency. In
the frequency response, it is clearly seen that z2 gives a extremely uncertain model
above 2 rad/s (which is reasonable since we are not exciting the system there!).
Of the other two data sets, z1 gives a slightly more uncertain model in this area,
which is explained by lower input signal energy. Therefore, z3 is most suitable to
use for system identification.
The uncertainty can also be studied for poles and zeros (Zeros and poles) with
confidence intervals:

figure; pzmap(G0,’k’,m1,’b’,m2,’g’,m3,’r’,’sd’,3);
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(6p)
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4. (a) For the change in volume of the liquid we have V̇ = F1 + F2 − F3. The resulting
heat transfer in the tank from the water flows is qflow = ρc(F1T1+F2T2−F3T ), unit
Watt. The heat flow out through the tank wall is given by qout = AU(T − T0).
The relation T = 1

C

∫
q = 1

ρV c

∫
q is differentiated to obtain the power balance

d
dt(ρV cT ) = q. This in turn is rewritten as ρc(V̇ T + V Ṫ ) = q. The total heat
transfer q is given by q = qflow − qout. This finally gives the relationships

V̇ = F1 + F2 − F3, V (0) = V0

Ṫ = 1
V

(
F1(T1 − T ) + F2(T2 − T ) − AU

ρc
(T − T0)

)
(7p)

(b) Dimensional analysis of V̇ gives:
LHS: [V̇ ] = L3

T .
RHS: [F1, F2, F3] = L3

T . OK!
Dimensional analysis of Ṫ gives:
LHS: [Ṫ ] = K

T .
RHS: [FiTi

V , FiT
V ] = L3

T K 1
L3 = K

T , i = 1, 2, 3.
[AUT

ρcV , AUT0
ρcV ] = L2 ML2T −3

L2K
K 1

ML−3
1

ML2T −2M−1K−1
1

L3 = K
T . OK! (3p)
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