
Solution for the exam in the course “Modeling and Learning for Dynamical
Systems" (TSRT92) 2022-10-28

1. (a) An algorithm for the solution of differential equations can be written as

xn+1 = G(t, xn−k+1, xn−k+2, . . . , xn, xn+1).

If xn+1 is not included in the expression, xn+1 can be obtained directly by evaluat-
ing the right-hand side, i.e. xn+1 = G(t, xn−k+1, xn−k+2, . . . , xn). For an implicit
method, the solution xn+1 is in the right-hand side and a system of equations must
then be solved to obtain xn+1.
An implicit method gives a higher order of accuracy than an explicit method with
the same stability region, but is more computationally demanding. (2p)

(b) Conduct several step response experiments with different amplitudes. A linear
system should give twice the output signal at twice the magnitude of the step as
input signal. (2p)

(c) Case (i):

y2(t) = 0.1y2(t − 1) + u2(t) = /u2(t) = y1(t)/
= 0.1y2(t − 1) − 0.4y1(t − 1) + 0.2y1(t − 2) + u1(t) = /u1(t) = y2(t)/
= 0.1y2(t − 1) − 0.4y1(t − 1) + 0.2y1(t − 2) + y2(t)

Case (ii):

y2(t) = u2(t − 1) + u2(t − 2) = /u2(t) = y1(t)/
= −0.4y1(t − 2) + 0.2y1(t − 3) + u1(t − 1) − 0.4y1(t − 3) + 0.2y1(t − 4) + u1(t − 2)
/u1(t) = y2(t)/
= −0.4y1(t − 2) − 0.2y1(t − 3) + 0.2y1(t − 4) + y2(t − 1) + y2(t − 2)

In (i), a term y2(t) appears in the right-hand side, which gives an algebraic loop.
In (ii) it works well, since the time indices of y2 in the right-hand side are shifted
at least one step compared to the left-hand side. (2p)

(d) Aggregate the state variables! This means that several variables of the same na-
ture are combined into one state. The object can be divided into e.g. N different
segments where the state of a particular segment becomes the homogeneous tem-
perature in that segment. The temperature is thus assumed to be constant in the
whole segment. (2p)

(e) A stiff differential equation has solutions with both slow and fast components and
the difference between these time constants is large. The fast term gives a require-
ment for a very short step length. Some methods (explicit) make it impossible to
increase the step length gradually without getting stability problems in the solver.
These stability problems can be avoided by using solvers that are always stable
for Re(λh) < 0, but then a low order of accuracy is obtained. Solution methods
for stiff problems therefore become a compromise between a large stability region
(almost the entire left half-plane) and a reasonably high order of accuracy. (2p)
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2. (a) The system is written on the form

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

The fast and slow dynamics of the system are obtained by

det(λI − A) =

λ + 1 0 0
0 λ + 15 0

−1 0 λ + 2

 = 0

which gives λ1 = −1, λ2 = −15, λ3 = −2. The fast dynamics is thus given by the
state x2. Replace the dynamics for x2, i.e. ẋ2 = −15x2 + 10u, with the static
relation given by ẋ2 = 0 = −15x2 + 10u. This gives x2 = 2

3u. The approximate
system is now given by

ẋ1 = −x1 + u

ẋ3 = x1 − 2x3 + 2u

y = 3x1 + 0.5 · 2
3u + x3 = 3x1 + x3 + 1

3u

(3p)
(b) i. Force equilibrium for the ball gives mr̈(t) = −kI(t)

r2(t) + mg.
Choosing x1(t) = r(t), x2(t) = ṙ(t) as the state, we obtain

ẋ1(t) = x2(t)

ẋ2(t) = − k

mx2
1(t)

I(t) + g

y(t) = x1(t)

(3p)
ii. The stationary point is given by ẋ = 0. This gives x2 = 0 and

0 = −kI0
x2

1
+ mg ⇐⇒ x1 = ±

√
kI0
mg

The negative solution can be rejected since the ball is under the magnet all
the time, i.e. r = x1(t) > 0. (1p)

iii. With the notation ẋ = f(x, I), the linearization can be written as

∆ẋ = ∂f(x, I)
∂x

∆x + ∂f(x, I)
∂I

∆I =
[

0 1
2kI0
mx3

1
0

]
∆x +

[
0

− k
mx2

1

]
∆I

where ∆x and ∆I represent the deviation from respective stationary value
and x1 is the stationary value that was given in task ii. The poles are given
by

det(λI − A) = det
[

λ −1
−2kI0

mx3
1

λ

]
= 0

which gives the poles λ = ±
√

2kI0
mx3

1
. (3p)
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3. (a) Start by subtracting the average of the input and output signal. The reason for
this is that the linear black-box models we study do not explicitly estimate the
absolute signal levels, which is why it is unnecessary to put effort into getting the
estimate to the correct mean level. (2p)

(b) Remove averages and split into estimation and validation data as below. Then
a spectral estimate is produced, where we used 1000 frequencies, logarithmically
distributed. (This gives slightly less flutter at high frequencies than with linear
distribution.) (2p)

z = iddata(y,u,0.2); % iddata-object
zd = detrend(z,0); % remove means and trends
ze = zd([1:length(y)/2]);
zv = zd(length(y)/2+1:length(y));
spafdr1000 = spafdr(ze, [], logspace(log10(0.001), log10(15.708), 1000));

It can be seen that the system probably has a notch in the frequency response
at about 0.63 rad/s and a peak at about 1 rad/s. When compared to a lower
number of frequencies during the spectral estimation, it is seen that the upper of
the two peaks of the disturbance spectrum becomes more and more prominent with
1000 frequencies, suggesting that the upper peak at about 2.5 rad/s is the true
disturbance. This is true with what we know about the system (the disturbances
contain mainly a relatively high frequency component). Considering the data
spectrum, one also sees that there is quite a lot of output energy at resonance peak
of the system at 1 rad/s, and a small part of it is also included when estimating
the noise model, as we just noted. (2p)
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(c) When selecting the model order (at the “knee” of the loss function, Order Selection),
one sees that order 3 gives reasonably good selection with a fit of 47.02 %. For
comparison, the “best” ARX model proposed by Order Selection is also taken,
of order 10, which only gives a fit of 54.19 %. An appropriate choice is to stay at
a low order, since higher order still does not give much better results.
The OE models suggest choosing order 3. Order 2 gives 50.23 % alignment, while
order 3 gives 74.17 % alignment. Orders above this give very similar results to
order 3 and are therefore not recommended as they do not add anything.
As for the ARMAX models, it can be seen that order 5 gives the best result with
an adaptation of 74.27 %. As we will see in the c) task, the fit of orders below
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this is due to the fact that not the whole system and the noise can be estimated
correctly. Higher order than 5 does not give better results due to overfitting.
ARX331, OE331 and AMX5551 are the models selected for further comparisons.

arx331 = arx(ze, [3 3 1]);
oe331 = oe(ze, [3 3 1]);
amx5551 = armax(ze, [5 5 5 1]);

(3p)
(d) An ARX model of order higher than 4 gives pole-zero cancellation, so it may be

overfitted to the noise. It is also seen that no ARX model is capable of estimating
the system frequency response satisfactorily, nor the noise. This is not surprising,
since the ARX model has the same poles for both the system and the noise model,
which is not the case here. I.e. an ARX model is a bad choice here.
The OE331 can estimate the frequency function of the system, but as you know
it does not have a noise model.
The AMX5551 is the best choice of them all, as it can estimate both the system
and the noise. However, it suffers from some pole-zero cancellation. It can also be
noted that the OE331 and AMX5551 have very similar poles and zeros, i.e. the
OE331 does well except for the noise model that the AMX5551 adds.
In the figure, the fuzzy line is from SPAFDR with 1000 frequencies. ARX331 is
the mismatched curve, while OE331 and AMX5551 follow the SPADFDR curve
well for the system (left figure). For the noise model (right figure), it is seen that
neither ARX331 (bent curve) nor OE331 (straight curve) follow the SPAFDR
model, while the AMX5551 does. (3p)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

A
m

pl
itu

de

Frequency response

10
−3

10
−2

10
−1

10
0

10
1

10
2

−200

−100

0

100

Frequency (rad/s)

P
ha

se
 (

de
g)

10
−1

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (rad/s)

Power Spectrum

4. (a) We start by defining the dimensions of the included variables (where we denote
the dimensions of mass, length and time with M , L and T ):

[p] =[p0] = ML−1T −2

[r] =L

[m] =M

[ρ] =ML−3

[E] =[V ∂psur
∂V

] = ML−1T −2.
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We are looking for an expression of p given as a function of the other variables,
i.e.,

p = f(p0, r, m, ρ, E).

According to Buckingham’s theorem, such a relationship should be possible to
write as a relationship between dimensionless variables. The next step is therefore
to figure out which dimensionless variables can be formed out of the included
variables, i.e., we are looking for an expression having the form

pe1 · pe2
0 · re3 · me4 · ρe5 · Ee6 .

The dimension of such a variable becomes

[pe1 · pe2
0 · re3 · me4 · ρe5 · Ee6 ]

=
(
ML−1T −2

)e1 (
ML−1T −2

)e2
Le3M e4

(
ML−3

)e5 (
ML−1T −2

)e6

=M e1+e2+e4+e5+e6L−e1−e2+e3−3e5−e6T −2e1−2e2−2e6 .

In order for it to be dimensionless, the exponents need to fulfill 1 1 0 1 1 1
−1 −1 1 0 −3 −1
−2 −2 0 0 0 −2


e1

...
e6

 =

0
...
0

 .

This is an equation system with 6 unknowns and 3 linearly independent equations,
and thus 6 − 3 = 3 linearly independent solutions. One way to select them:

e(1) =



1
−1
0
0
0
0


, e(2) =



0
1
0
0
0

−1


, e(3) =



0
0

−3
1

−1
0


,

which corresponds to the dimensionless variables
p

p0
,

p0
E

,
m

ρr3 ,

(we could have seen the 2 first variables instantly without doing any calculations).
(7p)

(b) A relationship for the 6 original variables will according to Buckingham’s theorem
assume the form

F

(
p

p0
,
p0
E

,
m

ρr3

)
= 0,

or, if we solve for p,
p = p0g

(
p0
E

,
m

ρr3

)
.

(3p)
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