
Solution for the exam in the course “Modeling and Learning for Dynamical
Systems" (TSRT92) 2022-08-22

1. a) The predictor of a NARX model is, in general, given by

ŷ(t|θ) = g
(
y(t− 1), . . . , y(t− n), u(t), . . . , u(t−m), θ

)
where g is a non-linear function. Writing it as neural network gives e.g.

ŷ(t|θ) =
d∑

k=1
αkκ(βTk (ϕ− γk))

with θ = {α1, . . . , αd, β1, . . . , βd, γ1, . . . , γd}. κ(x) is a so-called base function,
which is a non-linear scaling function of a scalar variable x.
The difference is that g ia a non-linear function instead of a linear function as in
a normal ARX. That is,

ŷ(t) = −a1y(t− 1) + . . .+−any(t− n) + b1u(t) + . . .+ bmu(t−m)

b) Assume that a step with amplitude u0 gives a step response y0(t). Then, steps in
the input signal with amplitudes uk = αku0, k = 1, . . . , d will give output signals
yk(t) = αky0(t), k = 1, . . . , d. If not, the system is non-linear. Note: Even if the
test above is valid, the system can be non-linear of other types of input signals or
of other amplitudes of the input signal than the ones tested.

c) Since u changes slowly, the parts with fast time constants can be replaced with
static relationships. For the system

ẋ1 = −350x1 + 70u (1a)
ẋ2 = 10x1 − 3x2 + u (1b)
y = 5x1 + 4x2 (1c)

is (1a) much faster than (1b). Therefore, (1a) can be replaced with the static
relation

0 = −5x1 + u

This gives the system

ẋ2 = −3x2 + 3u
y = 4x2 + u

d) Introduce the scaling

τ = βt, z(t) = αy(βt) = αy(τ)

The derivation of z is then

dz(t)
dt

= α
dy(τ)
dτ

dτ

dt
= αβ

dz(τ)
dτ

,
d2z(t)
dt2

= αβ2d
2y(τ)
dτ2
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If we plug in these expressions in

d2z(t)
dt2

+ 8dz(t)
dt

+ 12z(t) = u(t)

we get

αβ2d
2y(τ)
dτ2 + 8αβdy(τ)

dτ
+ 12αy(τ) = u(τ/β)

By choosing the parameters β and α as

α = 1/4, β = 2

we get the equation for which you have the solution. In other words, in order to get
the solution to the desired differential equation, the time axis must be compressed
by a factor of 2 and the amplitude reduced to 1/4 (ty z(t) = 1/4y(2t)).

e) The spectrum of y is given by

Φy(ω) = |G(iω)|2Φu(ω) + Φe(ω) = G(iω)G(−iω)Φu(ω) + Φe(ω) = 1
1 + ω2 + 1

since
Φu(ω) = Φe(ω) = 1

2. (a) The estimate θ̂N will converge to θ∗ according to

θ∗ = lim
N→∞

θ̂N = arg min
θ

∫ π

−π
| G0(eiω)−G(eiω, θ) |2 Φu(ω)dω

where G0(eiω) is the true system, G(eiω, θ) is the model and Φu(ω) is the signal
spectrum. (The model of the controller is H∗(eiω) = 1 here.) Thus, the model
convergence is weighted with the input signal spectrum Φu(ω).
Since we have the right model structure, there are values θ0 such that G0(eiω) =
G(eiω, θ0). Since the input signal is white noise, is Φu(ω) constant and the result
above gives that θ∗ = θ0, that is â1 = −1.71, â2 = 0.79, b̂1 = 1 och b̂2 = 0.92.

(b) Due to the constant input signal, the parameter convergence will be focused en-
tirely on ω = 0 because Φu(ω) = 0 for ω 6= 0. That is,

b̂ = arg min
b
| G0(ei0)− b |2= 1 + 0.92

1− 1.71 + 0.79 ≈ 24

(c) We start by loading the dataset and studying its time and frequency characteristics
(can also be done in the user interface by selecting Time plot or Data spectra):

load ex091012_4c
figure; plot(z1,z2,z3)
figure; plot(fft(z1),fft(z2),fft(z3))

We immediately see that the maximum amplitudes of the input signals are the
same, but that the spectrum differs. z1 contains all frequencies between 0–
31 rad/s, z2 approximately 0–2 rad/s and z3 approximately 1.5–7 rad/s . The
spectrum of z1 is also significantly lower because the energy is distributed over
more frequencies.
The models are estimated with:
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m1=oe(z1,[2 2 1]);
m2=oe(z2,[2 2 1]);
m3=oe(z3,[2 2 1]);

If you look at the coefficients, it is above all b1 and b2 that varies a lot, but even
the poles differ.
The models are evaluated above all in the frequency plane (Frequency resp) with
confidence intervals plotted:

G0=idpoly(1,[0 1 0.92],1,1,[1 -1.71 0.79],[],0.1); % the true system
figure; bode(G0,’k’,m1,’b’,m2,’g’,m3,’r’,’sd’,3); % 3 standard deviations

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Frequency (rad/s)

A
m

pl
itu

de

From u1 to y1

Only amplitude curves shown here.

A bandwidth of 3 rad/s gives an approximate scan rate of 3 rad/s. It is then
important that we have good knowledge of the system around this frequency. In
the frequency response, it is clearly seen that z2 gives a extremely uncertain model
above 2 rad/s (which is reasonable since we are not exciting the system there!).
Of the other two data sets, z1 gives a slightly more uncertain model in this area,
which is explained by lower input signal energy. z3 is therefore satisfying.
The uncertainty can also be studied for poles and zeros (Zeros and poles) with
confidence intervals:

figure; pzmap(G0,’k’,m1,’b’,m2,’g’,m3,’r’,’sd’,3);
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3. a) Backward approximation gives(
1
h(x1,n − x1,n−1)− x2,n

x1,n − t2n

)
= 0

which gives

x1,n = t2n

x2,n = 1
h(x1,n − x1,n−1) = 1

h(t2n − x1,n−1)

Here, the local and the global error are the same since x1,n−1 = x1(tn−1), that is

x1(tn)− x1,n = t2n − t2n = 0

x2(tn)− x2,n = 2tn −
1
h

(t2n − t2n−1) = 2tn −
1
h

(t2n − (tn − h)2) = h

That is, the error is h.
b) Let n(k) be the number of tins at time k. Then,

n(k + 1) = n(k) + uin(k)− uut(k)

Let the average age at time k be called x(k). Consider the change between two
times k and k + 1. At time k , uin(k) tins are added while uout(k) are removed.
At the next time (i.e. k + 1), the tins that were added have become one day old
while the amount of tins that remained, i.e. n(k) − uut(k), have become one day
older. That gives the equation

x(k + 1) =
uin(k) +

(
n(k)− uut(k)

)(
x(k) + 1

)
n(k) + uin(k)− uut(k)
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where the model is only valid if n(k) > 0 and x(k) ≥ 0. A plausibility test of the
model above is that uin = 0 gives x(k+1) = x(k)+1, i.e. if no new tins are added,
the entire stock gets older at the same rate that time does.
Stationary points are obtained by estimating n(k) = n(k + 1) = n̄ and x(k) =
x(k + 1) = x̄. This gives the equations

0 = uin,0 − uut,0
0 = n̄− x̄uut,0

where uin,0 and uut,0 are constant input signals. This means that in order for a
stationary point to exist, the input signals must be chosen to be equal and the
stationary point is then obtained as

(n̄, x̄) =
(
n̄,

n̄

uut,0

)

i.e. it is parameterized in both uut,0 and n̄. Even for the stationary points, a small
plausibility check can be made. If the turnover of tins is large in relation to the
number, i.e. if uout,0 and thus also uin,0, is large in relation to n̄, a low average
age is obtained.
Assume instead that you take out the oldest tins from the warehouse. Let n̄i be
the number of tins of age i at the stationary point and let d be the age of the
oldest tins. Then, the model is obtained by

n̄1 = uin,0

n̄2 = n̄1
...

0 = n̄d − uut,0

where the zero in the last row is due to att no tins should be older, which also is
obtained since n̄i = uin,0, i = 1, . . . , d. The average age becomes

x̄ =
∑d
i=1 iuin,0
duin,0

= 1 + d

2

4. (a) Write the system in matrix form1 0 0
0 1 0
0 0 0

 ẋ+

 1 0 −1
0 1 1
−1 1 0

x =

1 0
0 0
0 1

u
with x = [x1 x2 x3]T och u = [u1 u2]T . Now differentiate the equations until
the matrix in front of ẋ gets full rank. The number of derivatives of the system is
the index of the system. Taking the derivative of row 3 gives 1 0 0

0 1 0
−1 1 0

 ẋ+

1 0 −1
0 1 1
0 0 0

x =

1 0
0 0
0 0

u+

0 0
0 0
0 1

 u̇
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The matrix in front of ẋ has still rank 2. Add row 1 to row 3 and subtract row 2:1 0 0
0 1 0
0 0 0

 ẋ+

1 0 −1
0 1 1
1 −1 −2

x =

1 0
0 0
1 0

u+

0 0
0 0
0 1

 u̇
Taking the derivative of row 3 gives1 0 0

0 1 0
1 −1 −2

 ẋ+

1 0 −1
0 1 1
0 0 0

x =

1 0
0 0
0 0

u+

0 0
0 0
1 0

 u̇+

0 0
0 0
0 1

 ü
and the matrix in front of ẋ has full rank. Since we have differentiated two times,
the index is two.
Answer: Index 2. Motivation see above.

(b) With u2 = l1x1 + l2x2 + l3x3 the matrix form1 0 0
0 1 0
0 0 0

 ẋ+

 1 0 −1
0 1 1

−(1 + l1) (1− l2) −l3

x =

1
0
0

u1

is obtained. Taking the derivative of the third row gives 1 0 0
0 1 0

−(1 + l1) (1− l2) −l3

 ẋ+

1 0 −1
0 1 1
0 0 0

x =

1
0
0

u1

The requirement to obtain index 1 is that the matrix in front of ẋ must have rank
3, which is the case when l3 6= 0 and l1 and l2 arbitrary.
Answer: The system has index 1 when l3 6= 0, l1 and l2 arbitrary.
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