
Solution for the exam in the course “Modeling and Learning for Dynamical
System" (TSRT92) 2022-01-07

1. (a) BJ-model is more flexible than ARX-model, because the disturbance-model is
modeled separately. With the ARX model, the disturbance-model gets the same
poles as the system dynamics. This often means that the number of orders becomes
unnecessarily high to be able to describe the disturbance-model and that the ARX
model is much simpler to estimate because it is a linear regression (solve a system
of equations), which should be compared with numerical search of (local) minimum
for the BJ model.

(b) The solution most often involves parts with slow changes combined with parts
with fast changes. It is therefore inappropriate to use the same step length.

(c) Modelica uses object-oriented model building. This means that you are not sure
to get a state-space-model if you connect two systems which in themselves are
state-space-models.

(d) Validation of a model is always necessary for being able to judge whether it can
describe the system properties. For cross-validation, another data is used for
validation than is used in the model estimation.
Using the same data for both estimation and validation means that a higher order
model always leads to a better curve fit, even if the correct order was passed. The
additional parameters are in this case used to describe the specific disturbance
signal.
Using cross-validation, a model with too high order is not favored because it is
another disturbance signal than the one that was used for estimating the model.

2. (a) The input signal should have its main frequency content in the frequency band
that you want the model to have a good fit. It is a linear system we are going
to simulate, so we can choose a binary signal that alternates between -1 and 1.
Because we are interested in a good adaptation for low frequencies, the frequency
content of the signal is determined by the passband 0-0.1 of the Nyquist frequency,
i. e. the range 0 - 0.05 Hz.

G = tf([1, -0.4], [1, -0.3, 0.02], 1, ’variable’, ’z^-1’)
N = 10000;
u = idinput(N,’rgs’,[0 0.1]);
t = 0:T:(N-1)*T;
y = lsim(G, u, t); % simulerar systemet

(b) data = iddata(y, u, T);
m = arx(data, [1 1 1]);
Identification with ARX model structure of order 1 gives a = 4.262± 0.01014 och
b = −2.77± 0.008552 The figure shows that the fit is good for low frequencies.

(c) Change the properties of the input signal to higher frequencies, e. g. using the
following code

u = idinput([N 1],’rgs’,[0.8 1]);
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that focuses on frequencies 0.4− 0.5Hz.

3. (a) In this case, the parameters are gained from solving the equations

G(eiω1 , θ) = G0(eiω1)
G(eiω2 , θ) = G0(eiω2)

where θ = (b1, b2, f1, f2) and

G(eiω, θ) = b1e
−iω + b2e

−2iω

1 + f1e−iω + f2e−2iω

This is a system with four parameters and four equations that is uniquely solvable.
(b) It holds that the parameters converge

θ∗ = arg min
θ

∫ π

−π
G0(eiω)−G(eiω, θ)|2 Φu(ω)

|H∗(eiω)|2dω (1)

where Φu(ω) is the spectrum of the input signal. (See eq. (12.87) in the course
book.) In this case we have

Φu(ω) =
2∑

k=1
δ(ω − ωk) + δ(ω + ωk) (2)

where δ is the Dirac-impulse and H∗(eiωk) = 1. This input spectrum gives then
that

θ∗ = arg min
θ

2∑
k=1

(
|G0(eiωk)−G(eiωk , θ)|2 + |G0(e−iωk)−G(e−iωk , θ)|2

)
which is minimized by choosing from (a), i. e. we get perfect match at the given
frequencies.
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(c) In the case of three cos-terms we get the input spectrum

Φu(ω) =
3∑

k=1
δ(ω − ωk) + δ(ω + ωk)

which gives at θ∗ is minimized

θ∗ = arg min
θ

3∑
k=1

(
|G0(eiωk)−G(eiωk , θ)|2 + |G0(e−iωk)−G(e−iωk , θ)|2

)
Unlike the cases above, we can not be sure of getting a perfect match for the given
frequencies because the number of parameters is less than the number of equations.

(d) In this case, the input spectrum from eq. (2) is used and θ∗ is given by

θ∗ = arg min
θ

2∑
k=1

( |G0(eiωk)−G(eiωk , θ)|2

|H∗(eiωk)|2 + |G0(e−iωk)−G(e−iωk , θ)|2

|H∗(e−iωk)|2
)

Even in this case, regardless of H∗, you can select the parameters so that similarity
is achieved. That is, in the three cases where the input signal is a sum of two cosine
terms the same θ∗ is obtained. However, the input signal with three cosine terms
may give a different estimate.

4. (a) Let a0 = AT (AAT )−1y and let a = a0 + ∆a. We then have

Xa = Xa0 +X∆a = y +X∆a

and hence X∆a = 0 for a to be a solution. Now consider

‖a‖22 = ‖a0 + ∆a‖22 = ‖a0‖22 + ‖∆a‖22 + 2∆aTa0

where
∆aTa0 = ∆aTXT (XXT )−1y = 0

Hence we see that any a that satisfies the equation has at least the norm of a0,
and therefore a0 is the minimum norm solution.

(b) We have that
∂fk(a)
∂a

= 2(yk − aTxk)xk
and hence if we start with a0 = 0, we obtain that the solution we obtained from
the gradient algorithm is of the form

a =
N∑
k=1

αkxk

for some αk ∈ R. Equivalently we may write a = XTα, where α =
[
α1 · · · αN

]T
.

Together with Xa = y we obtain the following equation for α:

XXTα = y

which has a unique solution if X has full row rank. Then it follows that

a = XT
(
XXT

)−1
y

which agrees with the minimum norm solution.
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