
Solution for the exam in the course “Modeling and Learning for Dynamical
System" (TSRT92) 2021-10-29

1. (a) Three possible reasons are
i. Bad parametrization (ex. in y(t) = (a + b)u(t − 1) + e(t) cannot distinguish

between a and b);
ii. Bad choice of input (ex. concentrated in too few frequencies);
iii. Presence of a feedback loop.

(b) Alice with a program for solving linear systems of equations can only use ARX, as
this class of models is linear in the parameters. Bob can use all classes of models.

(c) For stationary stochastic processes, since u and e are uncorrelated, the spectrum
can be computed as

Φy(ω) = |G(iω)|2Φu(ω) + Φe(ω) = G(iω)G(−iω)Φu(ω) + Φe(ω)

= ω2 + α2

ω2 + β2 + 2 = 3ω2 + α2 + 2β2

ω2 + β2

(d) The system is asymptotically stable, hence at equilibrium it is ẋ = 0, from which
in correspondence of the input uo, we get the stationary value xo = −u2

o
3 . Hence

the input-output static relationship is yo = x2
o = u4

o
9 .

(e) For a linear ODE ẋ = λx, the forward Euler method is stable if |1 + hλ| < 1. In
this case, the most restrictive eigenvalue is λ = −4, hence

|1− 4h| < 1 =⇒ 0 < h <
1
2
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2. (a) Denote θ =
[
a1
b1

]
. Since the true system lies in the chosen model class and the

excitation is sufficiently rich (u is a white noise), it is θ̂N → θ∗ = θ0 =
[
0.4
0.2

]
,

i.e., the problem is unbiased and the model is identifiable. θ∗ should be ob-
tained by explicitly minimizing V̄ (θ) = limN→∞ VN (θ) (we do this in point (b)
below). The formula for the variance of the estimates is PN ≈ 1

N λvR̄
−1 where

R̄ = E[ψ(t, θ0)ψT (t, θ0)] and ψ(t, θ) = d
dθ ŷ(t|θ) is the gradient of the predictor. In

our case ψ(t, θ) =
[
−y(t− 1)
u(t− 1)

]
, which gives

R̄ = E

[
y2(t− 1) −y(t− 1)u(t)

−y(t− 1)u(t) u2(t)

]
=
[

Ry(0) −Ryu(−1)
−Ryu(−1) Ru(0)

]
Computing the terms:

Ry(0) = E[y2(t)] = E[(−0.4y(t− 1) + 0.2u(t) + v(t))2]
= 0.16Ry(0) + 0.04λu + λv

− 0.16E[y(t− 1)u(t)]︸ ︷︷ ︸
=Ryu(−1)=0

−0.8E[y(t− 1)v(t)]︸ ︷︷ ︸
=0

+0.4E[u(t)v(t)]︸ ︷︷ ︸
=0

i.e., Ry(0) = 2.04
0.84 = 2.42. Hence

R̄ =
[
2.42 0

0 1

]
=⇒ R̄−1 =

[
0.41 0

0 1

]

and PN ≈ 2
N R̄

−1, meaning that Var[â1] = 0.82
N and Var[b̂1] = 2

N .
(b) Also in this case the true system is contained in the model class, and the excitation

is rich, hence we have still an unbiased problem and an identifiable model. From
this we already know that it must be â1 = 0.4, â2 = 0 and b̂1 = 0.2. Let us
however compute explicitly these values through the prediction error minimization,
as requested in the exercise.

V̄ (θ) =E[(y(t)− ŷ(t|θ))2] = E[((a1 − 0.4)y(t− 1) + a2y(t− 2) + (0.2− b1)u(t) + v(t))2]
=2.42(a1 − 0.4)2 + 2.42a2

2 + (0.2− b1)2 + 2− 1.94(a1 − 0.4)a2

since Ry(0) = 2.42 (same as before) and

Ry(1) = E[y(t)y(t−1)] = E[(−0.4y(t−1)+0.2u(t)+v(t))y(t−1)] = −0.4Ry(0)+0 = −0.97

Differentiating w.r.t. the parameters:

dV̄ (θ)
da1

= 4.84(a1 − 0.4)− 1.94a2 = 0

dV̄ (θ)
da2

= −1.94(a1 − 0.4) + 4.84a2 = 0

dV̄ (θ)
db1

= −0.4 + 2b1 = 0
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from which it is straightforward to see that â1 = 0.4, â2 = 0 and b̂1 = 0.2 is indeed
a solution, in correspondence of which

d2V̄ (θ)
da2

1
> 0, d2V̄ (θ)

da2
2

> 0, d2V̄ (θ)
db2

1
> 0

i.e., a minimum of V̄ (θ). Let us compute the variance of these estimates.

R̄ =E[ψ(t, θ0)ψT (t, θ0)] = E

−y(t− 1)
−y(t− 2)
u(t)

 [−y(t− 1) −y(t− 2) u(t)
]

=

 Ry(0) Ry(1) −Ryu(−1)
Ry(1) Ry(0) −Ryu(−2)

−Ryu(−1) −Ryu(−2) Ru(0)


Ry(1) = −0.97 (already computed). Ryu(−1) = E[y(t− 1)u(t)] = 0, Ryu(−2) = 0.
Therefore

R̄ =

 2.42 −0.97 0
−0.97 2.42 0

0 0 1

 =⇒ R̄−1 =

0.49 0.19 0
0.19 0.49 0

0 0 1


or Var[â1] = Var[â2] = 0.98

N , Var[b̂1] = 2
N .

(c) For any na > 1 and nb > 1, it will be â1 = 0.4, â2 = . . . = âna = 0 and b̂1 = 0.2,
b̂2 = . . . = b̂nb

= 0 (model is still unbiased and identifiable), but the variance of
the estimate will increase with na and nb (compare the change in Var[â1] in (a)
and (b) above).
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3. (a) There is no sign of resonances, see the frequency function in Fig. 1, computed with
SPA (M=100).

Figure 1: Frequency function.

(b) The AXR order selection tool suggests a delay nk = 3. Keeping this delay, a model
that satisfies the constraint of max 3 poles is for instance the following OE(2,3,3):

oe233 =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)

B(z) = 0.008766 (+/- 0.008597) z^-3 + 0.9868 (+/- 0.01131) z^-4

F(z) = 1 - 0.4045 (+/- 0.01094) z^-1 - 0.1036 (+/- 0.0141) z^-2
- 0.001491 (+/- 0.008743) z^-3

Name: oe233
Sample time: 0.1 seconds

Parameterization:
Polynomial orders: nb=2 nf=3 nk=3
Number of free coefficients: 5
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:
Termination condition: Near (local) minimum, (norm(g) < tol).
Number of iterations: 2, Number of function evaluations: 5

Estimated using PEM on time domain data "mydatade".
Fit to estimation data: 93.77\%
FPE: 0.01221, MSE: 0.01197

It provides a fit to validation data of 92.69%.
Parameter uncertainty is reasonably small, although for B(z) the first coefficient
is of the same magnitude of the error (other models with max 3 poles seems to
have a similar problem).
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The model fit is shown in cyan in Fig. 2. Residuals are in Fig. 3 and are within

Figure 2: Model fit for OE(2,3,3).

ranges. Zeros/poles are in Fig. 5. The poles are all stable. Confidence interval are

Figure 3: Residuals

not completely disjoint, but again this appears due to the pole-order constraint.
The frequency function is similar to the SPA frequency function, see Fig. 5, up to
a difference in the DC gain.
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Figure 4: Zeros and poles

Figure 5: Frequency function of OE and SPA.
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4. (a) Formulate a linear regression

y(t) = −ay(t− 1) + bu(t− 1) + e(t)

= [−y(t− 1) u(t− 1)]
[
a
b

]
+ e(t)

= ϕT (t)θ + e(t)

with the estimator

ŷ(t) = ϕT (t)θ (1)

Thus, the regressor is ϕT (t) = [−y(t− 1) u(t− 1)] , t = 1, . . . , N . We formulate
the multivariable case in matrix terms (i. e. we stack the data):

Y (t) = [y(1) . . . y(N)]T

Φ(t) = X =
[
ϕT (0) . . . ϕT (N − 1)

]T
Then the estimator (1) becomes

Ŷ (t) =

 ŷ(1)
...

ŷ(N)

 = Φ(t)θ =

 −y(0) u(0)
...

...
−y(N − 1) u(N − 1)

 θ
(b) The prediction error

ε(t, θ) = y(t)− ϕT (t)θ

The least-squares criterion for the linear regression is given by

V (θ) = 1
N

N∑
t=1

1
2
[
y(t)− ϕT (t)θ

]2
and can be minimized analytically

0 = d

dθ
V (θ)

θ̂ =
[

1
N

N∑
t=1

ϕ(t)ϕ(t)T
]−1

1
N

N∑
t=1

ϕ(t)y(t)

We re-arrange the equation (assume y(0) = 0 and u(0) = 0):(
N∑
t=1

ϕ(t)ϕ(t)T
)
θ̂ =

N∑
t=1

ϕ(t)y(t)

(
N∑
t=1

[
−y(t− 1)
u(t− 1)

]
[−y(t− 1) u(t− 1)]

)
θ̂ =

N∑
t=1

[
−y(t− 1)
u(t− 1)

]
y(t)
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(
N−1∑
t=0

[
y2(t) −y(t)u(t)

−y(t)u(t) u2(t)

])
θ̂ =

N∑
t=1

[
−y(t− 1)y(t)
u(t− 1)y(t)

]
[ ∑N−1

t=0 y2(t) −
∑N−1
t=0 y(t)u(t)

−
∑N−1
t=0 y(t)u(t)

∑N−1
t=0 u2(t)

]
θ̂ =

[
−
∑N
t=1 y(t− 1)y(t)∑N
t=1 u(t− 1)y(t)

]
(2)

Choosing

α =
N−1∑
t=0

y2(t); β =
N−1∑
t=0

u(t)y(t); γ =
N−1∑
t=0

u2(t)

and

δ =
N∑
t=1

y(t− 1)y(t); η =
N∑
t=1

u(t− 1)y(t)

gives [
α −β
−β γ

]
θ̂ =

[
−δ
η

]
i. e.

XTX =
[
α −β
−β γ

]
, XTY =

[
−δ
η

]
(c) Use equation (2) and plug in u(t) = −ky(t)

N−1∑
t=0

[
y2(t) ky2(t)
ky2(t) k2y2(t)

]
θ̂ =

N∑
t=1

[
−y(t− 1)y(t)
−ky(t− 1)y(t)

]
N−1∑
t=0

y2(t)
[

1 k
k k2

]
θ̂ = −

N∑
t=1

y(t− 1)y(t)
[

1
k

]
Choosing

α =
N−1∑
t=0

y2(t); δ =
N∑
t=1

y(t− 1)y(t)

gives

α

[
1 k
k k2

]
θ̂ = −δ

[
1
k

]
(3)

i. e.
XTX = α

[
1 k
k k2

]
, XTY = −δ

[
1
k

]
Re-arrange the equation (3), assuming that α 6= 0:[

1 k
k k2

]
θ̂ = − δ

α

[
1
k

]
(4)

We see that the solution of the normal equation depends on the quotient δ
α : Any

a and b that satisfies a+ bk = − δ
α : {(a, b) : a = −bk − δ

α , b ∈ R} is a solution.
Since the two rows in (4) are linearly dependent (the second is k times the first),
and there is no unique solution.
Or: XTX is not invertible, i.e. there is no unique solution as θ̂ = (XTX)−1XTY .
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