
Statistical Sensor Fusion — Lab 2

Orientation Estimation using Smartphone Sensors

This version: 2023-06-02

REGLERTEKNIK

AUTOMATIC CONTROL

LINKÖPING

Name:

P-number:

Date:

Passed:

1 Introduction
Navigation is one of the first and one of the most important applications of sensor
fusion. At the same time, it is quite challenging both from a complexity and a
numerical point of view. The core in any navigation system is the orientation
filter that integrates inertial information from gyroscopes and accelerometers
with magnetometer measurements and other supporting sensors that relate to
the orientation of the platform with respect to the world.

This laboration aims at providing theoretical insights into the design and
implementation of such filters, and also to give practical experience in issues
such as tuning, disturbance rejection and sensitivity.

The laboration is split into two parts, an introductory session and an ex-
amination session, separated by approximately one week of independent work.
The introductory session is intended to help you get started with the laboration
tasks, sort out any practical issues with data collection and to provide you an
opportunity to ask questions about the lab. During the examination session, you
present your findings to a lab assistant and are expected to be able to answer
questions about the lab in general.

Note: Section 4 contains preparatory exercises that should be completed
before turning up at the introductory laboratory session. You do need the
results of these exercises to complete the lab.

2 The Sensor Fusion Android app
During the laboration you will work with data that you collect online with an
Android smartphone (technically any Android device with suitable sensors that
can be connected to Internet) using an app that streams the measurements
from the phone to a PC, where it can be accessed for in example Matlab.
The application is available for free from Google Play (https://goo.gl/0qNyU)
under the name Sensor Fusion.

First time launching the Sensor Fusion app you end up in its home screen
(Figure 1(a)), from which all the app’s basic functionality can be reached.

Select Sensor Clicking “Select Sensor” yields a new view similar to the one
in Figure 1(b). Exactly what exact sensors show up depends on what
sensors are available in your phone, this varies between different brands
and models. When selecting a sensor, sensor readings from it are visual-
ized. Figure 1(c) shows the result from clicking the “Gyroscope” button.
The gyroscope measurements are visualized as three curves in a graph,
together with the norm of the measurements.

Log Data Clicking “Log Data” brings up a view (Figure 2(a)) from which it
is possible to stream data over internet or save it to a file on the device to
be read out and processed at a later time. What sensor data is collected
is determined by checking the respective check box in the sensor list. The
check boxes “Stream” and “Log” determine if the collected measurements

2

https://goo.gl/0qNyU

should be streamed over internet and/or saved to a log file, respectively.
The details about where to stream the data and the log file are displayed
in the field below and can be changed by clicking the red gear at the
bottom right of the screen. Data collection is started and stopped using
the button at the bottom of the page. (Note that before starting to stream
data a receiver must be available, or the connection will be automatically
shut down.)

Sensor list Clicking “Sensor list” brings up a dialog (Figure 2(b)) enumerat-
ing all sensory measurements that are available on request by an Android
app. Note that some of the listed sensors are physical sensors, e.g., ac-
celerometers and magnetometers; whereas others are virtual sensors (the
measurements are obtained from fusing other sensors), e.g., orientation
and gravity. (The orientation sensor will be used to benchmark the orien-
tation filter you construct in this lab.)

About/Help This displays some information about the app.

Clicking the red gear in any view where it is present brings up the pref-
erences view (Figure 2(c)). Changes made in this view are stored in the
device. The most important fields are the Measurement>Frequency which
determine the measurement rate (default: 100 Hz); the Network settings
which are needed to determine where data is streamed; and the Log set-
tings which decide where the log file is created.

(a) Home screen. (b) Sensor selection screen. (c) Graph of gyroscope data.

Figure 1: Screen shots from the Sensor Fusion app.

3

(a) Stream view. (b) Sensor information. (c) Settings screen.

Figure 2: Screen shots from the Sensor Fusion app.

3 Summary of Relevant Theory
This section provides relevant background theory needed to perform this lab.
The presentation here could be considered complimentary to the description in
Chapter 13 of the textbook, and can in many cases replace it for the purposes
of this lab.

3.1 Representing Rotations using Quaternions
In this exercise two inertial frames are considered:

• The world frame, W, which is fixed to the earth, is aligned with its x-axis
pointing east, its y-axis pointing north, and its z-axis pointing up. This
way an orthogonal right-hand system is formed, sometimes denoted an
ENU-system (east-north-up-system).

• The sensor frame, S, is centered in the smartphone and moves with it.
Ideally it would be centered in the accelerometer to avoid measuring accel-
erations due to pure rotations, but as the exact location of it is unknown,
the frame is considered positioned in the center of the phone. Laying with
the screen face up the x-axis points right, the y-axis points forward, and
the z-axis points up. This is the same coordinate system used in both the
Android and the iOS APIs for writing apps.

See Figure 3 for an illustration of how the world frame, W, and the sensor frame,
S, relate to each other.

4

W xW

yW

zW

S xS

yS

zS

ppW

pS

Figure 3: Illustration of the two inertial frames used here; the world fixed frame,
W, and the sensor (phone) fixed frame, S.

The world and sensor systems are related via a linear transformation, which
can be described mathematically as

pW = RW/SpS + tW/S , (1)

where pS is a point expressed in the sensor frame and pW is the same point
expressed in the world frame. The relative rotation between the two frames is
given by RW/S , the rotation aligns the world frame with the sensor frame. The
translation between centers of the coordinate frames is given by tW/S ; however,
as only the rotation is of interest in this lab, tW/S will not be considered further.

The focus of this lab is to estimate the rotation RW/S based on the sensor
measurements available from a smartphone. The rotation describes how to
rotate points in the sensor frame, S, to describe them in the world frame, W.
It can also be interpreted as the rotation that is applied to the world frame to
align it with the sensor system.

A rotation can be described in many ways. One way is to use a rotation
matrix. This is a description most of us are familiar with and know well how to
manipulate. However, it uses 9 values to represent 3 degrees of freedom. Hence,
it is not a minimal representation, which makes estimating the rotation matrix
difficult. Another alternative is to use Euler angles, i.e., a representation in
terms of three consecutive rotations around predefined axes. Even though rep-
resented by three values, Euler angles are not unique — several combinations
of rotations result in the same final rotation — the representation has discon-
tinuities in the parameters, and suffers from the gimbal lock effect. These are
all factors that make the Euler angles unsuitable for estimation purposes. A
third alternative is to use a unit length quaternion representation. This repre-
sentation suffers less from the problems of the two other representations and is
therefore a popular choice for orientation estimation.

The quaternion representation of a rotation can be interpreted as an axis

5

angle representation of the rotation according to

q =

q0
q1
q2
q3

 =

cos(1

2 α)

sin(1
2 α)

v̂x

v̂y

v̂z

 =

(
cos(1

2 α)
sin(1

2 α)v̂

)
,

where α is a positive rotation around the axis of rotation v̂, assumed to be of unit
length, i.e., ∥v̂∥ = 1. Note, this interpretation clearly shows that the quaternion
representation is in fact not unique, q and −q represent the same rotation. (To
show this is a straightforward application of trigonometric identities on the axis
angle representation.) However, this is much less of a problem than in the case
with Euler angles. In most cases, q0 ≥ 0 is assumed and enforced to get an
unambiguous representation.

The following mathematical relations are useful when working with orienta-
tion estimation using the quaternion representation:

• The formula to convert from a unit length quaternion to a rotation matrix,

R = Q(q) =

2q2
0 − 1 + 2q2

1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q2

0 − 1 + 2q2
2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 − 1 + 2q2

3

 . (2a)

This is implemented in Qq(q) in Appendix A.2.3. Note how all occurrences
of qi are in pairs, hence, changing the sign on all quaternion components
does not change the resulting rotation matrix Q(q) = Q(−q), as noted
previously.
The reverse operation is obtained as

q = Q−1(R) = 1
2

√

1 + R11 + R22 + R33
sgn(R32 − R23)

√
1 + R11 − R22 − R22)

sgn(R13 − R31)
√

1 − R11 + R22 − R22)
sgn(R21 − R12)

√
1 − R11 − R22 + R22)

 , (2b)

which is a relatively numerically stable expression compared to the alter-
natives at the cost of slightly more costly operations.

• The angle, ∆, between two unit length quaternions q0 and q̂ can be cal-
culated as

∆ = 2 arccos
(∣∣∣∣ 3∑

i=0
q0

i q̂i

∣∣∣∣). (3)

This way ∆ describes the difference between q̂ and q0 as the angle q̂ must
be turned to obtain q0.

• The time derivative of a quaternion, in terms of angular velocities, ω,
(where the quaternion represents RW/S and ω is given in the sensor frame)

6

can be shown to be

q̇ = 1
2S(ω)q = 1

2

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

q0
q1
q2
q3

 (4a)

= 1
2 S̄(q)ω = 1

2

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1

−q2 q1 q0

ωx

ωy

ωz

 . (4b)

The functions S(ω) and S̄(q) are implemented in Somega(omega) and
Sq(q), in Appendices A.2.5 and A.2.4, respectively.

• Differentiating Q(q) with respect to q is a bit more tricky as the result is a
three-dimensional tensor. Differentiating with respect to one component
at the time yields:

dQ(q)
dq0

= 2

2q0 −q3 q2
q3 2q0 −q1

−q2 q1 2q0

 , (5a)

dQ(q)
dq1

= 2

2q1 q2 q3
q2 0 −q0
q3 q0 0

 , (5b)

dQ(q)
dq2

= 2

 0 q1 q0
q1 2q2 q3

−q0 q3 0

 , (5c)

dQ(q)
dq3

= 2

 0 −q0 q1
q0 0 q2
q1 q2 2q3

 . (5d)

The quaternion derivative is implemented in dQqdq(q), in Appendix A.2.6.

• The discrete time update of a quaternion based on given angular velocities,
ωk, and process noise, wk in (7), can be approximated with

qk+1 = e
1
2 S(ωk+wk)T qk

=
(

cos
(∥ωk+wk∥T

2
)
I + T

2 ·
sin

(∥ωk+wk∥T
2

)
∥ωk+wk∥T

2

S(ωk + wk)
)

qk (6a)

≈
(
I + 1

2 S(ωk)T
)
qk + T

2 S̄(qk)wk. (6b)

3.2 Sensor Fusion
The basic sensor fusion model is

xk+1 = f(xk, uk, wk), (7a)
yk = h(xk, uk, ek), (7b)

7

where xk is the state at time k, uk known (or measured) input to the system,
wk is process noise, yk is the measurements (or system output), and ek is the
measurement noise. Here, the goal is to estimate the orientation, represented
by the unit quaternion qk. The sensors provide 3D measurements of:

• Angular rates ωk, denoted yω
k when used as measurements, at sampling

rate fω
s .

• Accelerations ak, denoted ya
k when used as measurements, at sampling

rate fa
s .

• Magnetic field mk, denoted ym
k when used as measurement, at sampling

rate fm
s .

When designing a filter to estimate the phone’s orientation there are several
things to take into consideration: how to divide the measurements in input and
output, which sensor biases, if any, to estimate, and how to handle asynchronous
measurements.

There are many ways to divide the measured quantities in inputs uk and
outputs yk in (7). For clarity, everything that is measured is referred to as
measurements, and can be used as inputs or outputs depending on the chosen
filter structure. The main structures are:

1. The simplest model is to let

xk = qk, uk = ωk, yk =
(
ya,T

k ym,T
k

)T
, (8a)

and not to attempt any bias estimation.

2. The most complex model is to let

xk =
(
qT

k ωT
k bω,T

k ba,T
k

)T
, yk =

(
yω,T

k ya,T
k ym,T

k

)T
, (8b)

and estimate both the accelerometer bias, ba, and the gyroscope bias, bω.

3. An intermediate model is

xk =
(
qT

k bω,T
k ba,T

k

)T
, uk = ωk, yk =

(
ya,T

k ym,T
k

)T
, (8c)

where the gyroscope measurement is considered as input, but the biases
are estimated.

4. Since the accelerometer measures both the specific force Fk (that accel-
erates the platform) and the gravity g0, another alternative is to include
position and velocity in the state, and to let acceleration either be a state
or an output. That is, to also estimate tW/S . This is a much harder prob-
lem which needs some sort of absolute measurement to be observable, or
the estimate will quickly start to drift.

8

A more philosophical question is what the difference of an input and output
is from a filtering perspective. There are many explanations to this degree of
freedom. One specific aspect here is the following:

• If the angular rates are integrated as inputs in the time update, the motion
affects the mean of the state estimate directly.

• If the angular rates are used in the measurement update, this new infor-
mation is weighted together with the prior in a Bayesian fashion. The
mean of the orientation state does not take the full step according to the
measurement. There will also be a delay in information, because it takes
one time update until the derivative affects the angular state.

The conclusion is that we prefer to consider uk = ωk as an input. Both ak and
mk are subject to disturbances, and outlier rejection is most naturally imple-
mented in the measurement update. This is another reason why we advocate
the first approach above.

A remaining question is whether an attempt should be made to estimate the
biases in the sensors, bω and ba above.

The multi-rate, or asynchronous, measurement aspect is an issue in practice
if all sensors have different rates. Consider case 1 above. If the sample rate
fω

s is an integer multiple of fa
s and fm

s , then the measurement update can be
performed at regular cycles after the time update. In the general case, the
piece-wise constant assumption has to be used, and the time update is matched
to the next output observation.

4 Preparations
The following exercises should be completed before the introductory lab-
oratory session. The results are needed before you can get started with the
lab. Hence, it is important that you come well prepared to the introductory
laboratory session in order to be able to get as useful help as possible.

Given the discussion above, use a state-space model with the rotation RW/S

represented as a quaternion as state vector.

4.1 Dynamic Equation
The dynamic model is then given by (6a). Before the lab session, write a
Matlab function [x, P] = tu_qw(x, P, omega, T, Rw) that implements the
time update function, where omega is the measured angular rate, T the time since
the last measurement, and Rw the process noise covariance matrix. For your
convenience, the functions S̄(q) and S(ω) are available in App. A.2.4 and A.2.5,
respectively.

Furthermore, write a similar function to handle the time update in the case
that there is no angular rate measurement available.

9

4.2 Acceleration Measurement Equation
The measurements from the accelerometer can be modeled using the relation

ya
k = QT (qk)(g0 + Fk) + ea

k, (9)

where no specific force is assumed present (i.e., Fk = 0), g0 is the nominal
gravity vector, and ea

k is the measurement noise.
Before the lab session, prepare a Matlab function

[x, P] = mu_g(x, P, yacc, Ra, g0) that implements the accelerometer mea-
surement update, where yacc is a shorthand for ya

k and Ra is the measurement
noise covariance matrix. You can let g0 be a constant in your implementa-
tion. The functions to compute Q(q) and dQ(q)/dq are available in App. A.2.3
and A.2.6, respectively.

4.3 Magnetic Field Measurement Equation
Before the lab session prepare a Matlab function
[x, P] = mu_m(x, P, ymag, Rm, m0) that implements a magnetometer mea-
surement update, where ymag is a shorthand for ym

k .

Hint: The magnetometer measures the earth magnetic field (possibly includ-
ing disturbances) in sensor coordinates,

ym
k = QT (qk)m0 + em

k , (10)

where m0 is the earth magnetic field in world coordinates. By definition there
should be no magnetic field component in the west-east direction. Hence, the
nominal magnetic field can be derived from magnetic field measurements as the
phone lies horizontally without knowledge of the direction of north using the
relation

m0 =
(

0
√

m2
x + m2

y mz

)T

, (11)

where m is the measured magnetic field.

4.4 Quaternion Normalization
In order for the quaternion representation of the orientation to work, it is essen-
tial that the quaternion is of unit length, i.e., ∥qk∥ = 1. The extended Kalman
filter does not automatically maintain this quaternion property. Therefore, be-
fore the lab session, figure out a way to ensure that the quaternion keeps unit
length.

5 Exercises
The following exercises should be completed before the examination session. The
passages prefixed by “Check-point:” should be presented to a lab assistant to

10

pass the lab. To make reporting as efficient as possible, labreport.m is provided.
By using it you make sure that you have the documentation the lab assistant
will ask for, and that you do not miss any important aspects of the lab. Hence,
fill out the report template as you work with the lab, and have it available at
the examination session. For all of the checkpoints, be prepared to explain what
you’ve done, observed and the assumptions that you’ve made.

Consider the structure (8a) and make use of the code skeleton in Appendix A.1.

1. Connect the phone with your lab computer:

• Download all the supporting Matlab files and the sensorfusion.jar
file from: https://bit.ly/3qqdTKT. Extract the files in the zip-
archive to your lab folder.

• Run the startup function to initialize the environment correctly.
Note, this must be done each time Matlab is restarted.

• Connect the smartphone to eduroam.
• Determine the IP of your lab computer. One way to do this is to run

showIP in Matlab.
• Enter the lab computer’s IP into the app’s configuration view (see

Figure 2(c).) At the same time, make sure the port is set to 3400
and that the measurement frequency is 100 Hz.

• Always start your Matlab program before initiating the streaming
from the smartphone, it acts as a server to which the client on the
phone tries to connect.

2. Get to know your data: Spend a few minutes to play around with the
app and the sensors in the “Select Sensor” view to get an initial feeling
for the data you are going to work with.
Use filterTemplate to collect a few seconds of data and compute mean
and variance for the accelerometer, gyroscope, and magnetometer. Also,
analyze the measurements to see if the noise is Gaussian and if it has any
trends. What do the results tell you? Your results should be used to tune
the filter.
Hint: Unavailable measurements are marked with a NaN (not a number)
value. Make sure to take this into consideration when computing means
etc. The function isnan(x) can be used to find NaN values; the average
acceleration can be computed as:
mean(meas.acc(:, ~any(isnan(meas.acc), 1)), 2)

Check-point: Be prepared to show the lab assistant:

• A histogram of the measurements for each sensor and axis.
• A plot of the signals over time. If there are trends figure out a way

to deal with these.
• The determined average acceleration vector, angular velocity vector,

and magnetic field, and their respective covariance matrices.

11

https://bit.ly/3qqdTKT

3. Add the EKF time update step: Start to implement an EKF to
estimate the orientation by adding the time update. (Make a copy of
filterTemplate.m and add the time update step you wrote in Section 4.1
as part of your lab preparations.) Use the previously estimated mean and
variance as input to the filter and use it to compensate for bias and noise
levels.
You should now have a very reactive estimate with no absolute orientation.
What happens if you start the filter with the phone on the side instead of
face up on the desk? Why? Shake the phone and explain what happens.

Check-point: Be prepared to show the lab assistant a plot of the resulting orientation as
well as orientation error (as compared to the orientation measurement).
Be ready to report your findings guided by the questions above.

4. Add the EKF accelerometer measurement update step: Add the
accelerometer update to the EKF (use mu_g(x, P, yacc, Ra) you wrote
in Section 4.2 preparing for the lab). Now, the orientation should be
correct up to a rotation in the horizontal plane. Test the sensitivity to
specific forces (body accelerations) with different experiments. As an ex-
ample, slide the device quickly back and forth on the horizontal surface of
a table.

5. Add accelerometer outlier rejection: Add a simple outlier rejection
algorithm for ak, based on the assumption that ∥ak∥ ≈ g = 9.81 without
specific force. Use the orientation view’s setAccDist function to indicate
when the accelerometer measurements are considered disturbed/outliers.
Repeat the same experiments as in the previous two steps.

Check-point: Be prepared to show plots of the resulting orientation as well as orientation
error (as compared to the orientation measurement) with and without
outlier rejection. Be ready to explain what you observed when shaking
and sliding your phone on the desk with and without outlier rejection.

6. Add the EKF magnetometer measurement update step: Imple-
ment a magnetometer update, based on your preparations in Section 4.3.
You should now have a orientation filter that behaves much like the one
implemented in the phone. What happens if you introduce a magnetic
disturbance? (The power supply in the monitor can provide a suitable
disturbance.)

7. Add magnetometer outlier rejection: Try to come up with a way
to perform outlier rejection for magnetic disturbances, e.g., by estimating
the strength of the magnetic field and reject measurements when the field
strength differs too much from what you expect. Implement the outlier
rejection, and evaluate if it helps. Use the orientation view’s setMagDist
function to indicate when the magnetic field measurements are considered
disturbed/outliers. What assumptions do you rely on? When are they

12

reasonable? What happens now when you introduce a magnetic distur-
bance?
Use the q2euler function (Appendix A.2.2) and plot the Euler angles of
both your orientation filter and the built in filter in the phone.

Check-point: Be prepared to show plots of the resulting orientation as well as orientation
error (as compared to the orientation measurement) with and without
outlier rejection. Be ready to explain what you observed when using the
filter with and without a magnetic disturbance. Report your findings
guided by the questions above.

8. Test your filter without gyroscope measurements: Turn off the
gyroscope measurements and evaluate the filter; slide the phone on the
desk, shake it, and introduce magnetic disturbances.

Check-point: Show plots of the resulting orientation as well as orientation error (as com-
pared to the orientation measurement) without gyroscope measurements.
Show the filter running without gyroscope measurements to the assistant.

9. If you are interested and have time:

• Compare the difference between using (6b) and the exact form (6a).
• Evaluate the remaining combinations of measurements in the filter:

only accelerometer, only magnetometer, gyroscope and magnetome-
ter.

10. Wipe your account details from the phone: Once you have passed
the lab, wipe your login details for eduroam from the phone. Got to the
network settings screen again, press the eduroam entry until you get the
option to “Forget network” and do so.

A Provided Code
The following functionality is provided in the zip-archive https://bit.ly/
3qqdTKT. Make sure to run the included startup function to initialize the
package before doing anything else. Without this step it is not possible to es-
tablish a connection with the phone. When using filterTemplate always start
the Matlab program before initializing the streaming from the phone as the
Matlab program acts as a server for the data from the phone

A.1 Code Skeleton

1 function [xhat , meas] = f i l t e r T e m p l a t e (fname , calAcc , calGyr , calMag)
% FILTERTEMPLATE F i l t e r templa te
%
% This i s a template func t i on f o r how to c o l l e c t and f i l t e r data

5 % sent from a smartphone l i v e . As you implement your own o r i e n t a t i o n
% est imate , i t w i l l be v i s u a l i z e d in a s imple i l l u s t r a t i o n . I f the

13

https://bit.ly/3qqdTKT
https://bit.ly/3qqdTKT

% o r i e n t a t i o n es t imate i s checked in the Sensor Fusion app , i t w i l l be
% d i s p l a y e d in a separa te view .
%

10 % [xhat , meas] = FILTERTEMPLATE() s t a r t s a s e r v e r t h a t the Sensor Fusion
% app can connect to and runs the implemented f i l t e r . I n t e r r u p t i n g the code
% y i e l d s the r e s u l t in xhat and meas .
%
% [xhat , meas] = FILTERTEMPLATE(fname) uses the data in fname as the

15 % measurement source i n s t e a d o f a stream . The func t ion re turns when the
% data f i l e has been comp le te l y parsed .
%
% Input
% −−−−−−

20 % fname : s t r i n g
% Path to data f i l e
%
% calAcc / calGyr /calMag : s t r u c t wi th f i e l d s :
% m: b i a s mean

25 % R: b i a s covar iance
%
% Output
% −−−−−−
% xhat : s t r u c t with f i e l d s :

30 % t : timestamp (1 x T)
% x : s t a t e es t imate f o r corresponding timestamp (nx x T)
% P: s t a t e covar iance f o r corresponding timestamp (nx x nx x T)
%
% meas : s t r u c t wi th f i e l d s :

35 % t : timestamp (1 x T)
% acc : acce lerometer measurement f o r corresponding timestamp (3 x T)
% gyr : gyroscope measurement f o r corresponding timestamp (3 x T)
% mag : magnetometer measurement f o r corresponding timestamp (3 x T)
% o r i e n t : o r i e n t a t i o n quaternion from the phone f o r corresponding

40 % timestamp (4 x T)
%
% Measurements not a v a i l a b l e are marked with NaNs .

%% Setup necessary i n f r a s t r u c t u r e
45 import (’ se . hendeby . sensordata . ∗ ’) ; % Used to r e c e i v e data .

DISPLAY_FREQ = 10 ; % [Hz] Frequency o f update o f the v i s u a l i z a t i o n

%% F i l t e r s e t t i n g s
50 t0 = [] ; % I n i t i a l time (i n i t i a l i z e on f i r s t data r e c e i v e d)

nx = 4 ;
% Add your f i l t e r s e t t i n g s here .

% Current f i l t e r s t a t e .
55 x = [1 ; 0 ; 0 ; 0] ;

P = eye (nx , nx) ;

% Saved f i l t e r s t a t e s .
xhat = s t r u c t (’ t ’ , zeros (1 , 0) , . . .

60 ’ x ’ , zeros (nx , 0) , . . .
’P ’ , zeros (nx , nx , 0)) ;

meas = s t r u c t (’ t ’ , zeros (1 , 0) , . . .

14

’ acc ’ , zeros (3 , 0) , . . .
65 ’ gyr ’ , zeros (3 , 0) , . . .

’mag ’ , zeros (3 , 0) , . . .
’ o r i e n t ’ , zeros (4 , 0)) ;

t ry
%% Create data l i n k

70 err_hint = [’ Unsucce s s fu l l oad ing o f sensordata . j a r ! \ n ’ , . . .
’Make sure to run s ta r tup .m b e f o r e attempting to run t h i s f u n c t i o n . ’] ;

i f nargin == 0 | | isempty (fname)
s e r v e r = StreamSensorDataReader (3 4 0 0) ;
err_hint = [’ Unsucce s s fu l connect ing to c l i e n t ! \ n ’ , . . .

75 ’Make sure to s t a r t streaming from the phone ∗ a f t e r ∗ s t a r t i n g t h i s f u n c t i o n . ’] ;
else

s e r v e r = FileSensorDataReader (fname) ;
err_hint = sprintf ([’ Unsucce s s fu l read ing data from f i l e ! \ n ’ , . . .

’Make sure ’ ’%s ’ ’ i s the c o r r e c t path to the log f i l e . ’] , fname) ;
80 end

% Makes sure to resources are returned .
s e n t i n e l = onCleanup (@() s e r v e r . stop ()) ;

s e r v e r . s t a r t () ; % S t a r t data r e c e p t i o n .
85 clear err_hint

catch e
e = e . addCause (MException (sprintf (’%s : UnableToConnect ’ , mfilename) , err_hint)) ;
rethrow (e) ;

end
90

% Used f o r v i s u a l i z a t i o n .
figure (1) ;
subplot (1 , 2 , 1) ;
ownView = Orientat ionView (’Own f i l t e r ’ , gca) ; % Used f o r v i s u a l i z a t i o n .

95 ownView . act ivateKeyboardCal lback ;
googleView = [] ;
tnextd i sp = 0 ; % Next time to update the v i s u a l i z a t i o n

%% F i l t e r loop
100 % Repeat wh i l e data i s a v a i l a b l e and q hasn ’ t been pressed

while s e r v e r . s t a t u s () && ~ownView . quit
% Get the next measurement set , assume a l l measurements
% wi th in the next 5 ms are concurrent (s u i t a b l e f o r sampling
% in 100Hz) .

105 data = s e r v e r . getNext (5) ;

i f isnan (data (1)) % No new data r e c e i v e d
cont inue ;

end
110 t = data (1) / 1 0 0 0 ; % Extrac t current time

i f isempty (t0) % I n i t i a l i z e t0
t0 = t ;

end
115

gyr = data (1 , 5 : 7) ’ ;
i f ~any(isnan (gyr)) % Gyro measurements are a v a i l a b l e .

% Do something
end

120

15

acc = data (1 , 2 : 4) ’ ;
i f ~any(isnan (acc)) % Acc measurements are a v a i l a b l e .

% Do something
end

125
mag = data (1 , 8 : 1 0) ’ ;
i f ~any(isnan (mag)) % Mag measurements are a v a i l a b l e .

% Do something
end

130
o r i e n t a t i o n = data (1 , 1 8 : 2 1) ’ ; % Google ’ s o r i e n t a t i o n es t imate .

% V i s u a l i z e r e s u l t
i f t >= tnextd i sp

135 tnextd i sp = t + 1/DISPLAY_FREQ; % Next v i z u a l i z a t i o n update
s e t O r i e n t a t i o n (ownView , x (1 : 4)) ;
t i t l e (ownView , ’OWN’ , ’ FontSize ’ , 1 6) ;
i f ~any(isnan (o r i e n t a t i o n))

i f isempty (googleView)
140 subplot (1 , 2 , 2) ;

% Used f o r v i s u a l i z a t i o n .
googleView = Orientat ionView (’ Google f i l t e r ’ , gca) ;

end
s e t O r i e n t a t i o n (googleView , o r i e n t a t i o n) ;

145 t i t l e (googleView , ’GOOGLE’ , ’ FontSize ’ , 1 6) ;
end

end

% Save es t ima te s
150 xhat . x (: , end+1) = x ;

xhat .P(: , : , end+1) = P;
xhat . t (end+1) = t − t0 ;

meas . t (end+1) = t − t0 ;
155 meas . acc (: , end+1) = acc ;

meas . gyr (: , end+1) = gyr ;
meas . mag (: , end+1) = mag ;
meas . orient (: , end+1) = o r i e n t a t i o n ;

end
160 end

A.2 Utility Functions
A.2.1 Normalize quaternion

1 function [x , P] = mu_normalizeQ (x , P)
% MU_NORMALIZEQ Normalize the quaternion

x (1 : 4) = x (1 : 4) / norm(x (1 : 4)) ;
5 x = x∗sign (x (1)) ;

end

16

A.2.2 Convert quaternions to Euler angles

1 function e u l e r = q 2 e u l e r (q)
% Q2EULER Convert quatern ions to Euler ang l e s
% e u l e r = q 2 e u l e r (q)
% q i s a quaternion in columns (4xN)

5 % e u l e r = [yaw(z) ; p i t c h (x) ; r o l l (y)]
q = [q (1 , :) ; q (3 , :) ; q (2 , :) ; q (4 , :)] ;
e u l e r = zeros (3 , s ize (q , 2)) ;

xzpwy = q (2 , :) . ∗ q (4 , :) + q (1 , :) . ∗ q (3 , :) ;
10

IN = xzpwy+sqrt (eps) >0.5; % Handle the north po l e
e u l e r (1 , IN) = 2∗atan2 (q (2 , IN) , q (1 , IN)) ;
IS = xzpwy−sqrt (eps) < −0.5; % Handle the south po l e
e u l e r (1 , IS) = −2∗atan2 (q (2 , IS) , q (1 , IS)) ;

15
I = ~(IN | IS) ; % Handle the d e f a u l t case

e u l e r (1 , I) = atan2 (2∗ (q (2 , I) . ∗ q (3 , I) − q (1 , I) . ∗ q (4 , I)) , . . .
1−2∗(q (3 , I) . ^ 2 + q (4 , I) . ^ 2)) ;

20

e u l e r (3 , I) = atan2 (2∗ (q (3 , I) . ∗ q (4 , I) − q (1 , I) . ∗ q (2 , I)) , . . .
1−2∗(q (2 , I) . ^ 2 + q (3 , I) . ^ 2)) ;

25 e u l e r (2 , :) = −asin (2∗ xzpwy) ;

e u l e r = mod(e u l e r+pi , 2∗ pi) − pi ;
end

A.2.3 Q(q)

1 function Q=Qq(q)
% The matrix Q(q) de f ined in (13 .16)

q0=q (1) ; q1=q (2) ; q2=q (3) ; q3=q (4) ;
Q = [2 ∗ (q0^2+q1 ^2) − 1 2∗(q1∗q2−q0∗q3) 2∗(q1∗q3+q0∗q2) ;

5 2∗(q1∗q2+q0∗q3) 2∗(q0^2+q2 ^2) − 1 2∗(q2∗q3−q0∗q1) ;
2∗(q1∗q3−q0∗q2) 2∗(q2∗q3+q0∗q1) 2∗(q0^2+q3 ^2) − 1] ;

end

A.2.4 S̄(q)

1 function S=Sq (q)
% The matrix S(q) de f ined in (13.11 c)

q0=q (1) ; q1=q (2) ; q2=q (3) ; q3=q (4) ;
S=[−q1 −q2 −q3 ;

5 q0 −q3 q2 ;
q3 q0 −q1 ;

−q2 q1 q0] ;
end

17

A.2.5 S(ω)

1 function S=Somega (w)
% The matrix S(omega) de f ined in (13.11 b)

wx=w(1) ; wy=w(2) ; wz=w(3) ;
S=[0 −wx −wy −wz ;

5 wx 0 wz −wy ;
wy −wz 0 wx ;
wz wy −wx 0] ;

end

A.2.6 dQ(q)/dq

1 function [Q0 , Q1, Q2, Q3] = dQqdq(q)
% The d e r i v a t i v e o f Q(q) wrt qi , i ={0 ,1 ,2 ,3} , as i m p l i c i t e l y de f ined
% in (13.20 d)

q0=q (1) ; q1=q (2) ; q2=q (3) ; q3=q (4) ;
5 Q0 = 2∗ [2∗ q0 −q3 q2 ;

q3 2∗q0 −q1 ;
−q2 q1 2∗q0] ;

Q1 = 2∗ [2∗ q1 q2 q3 ;
q2 0 −q0 ;

10 q3 q0 0] ;
Q2 = 2∗ [0 q1 q0 ;

q1 2∗q2 q3 ;
−q0 q3 0] ;

Q3 = 2∗ [0 −q0 q1 ;
15 q0 0 q2 ;

q1 q2 2∗q3] ;
end

A.2.7 OrientationView

The class orientation view provides a way to easily visualize orientations. The
class is used in the filter template.
self = OrientationView(figname) Create a OrientationView figure with a

given figure name.

setOrientation(self, q, P) Set the orientation to display, if P is given it is
used to visualize the uncertainty in the orientation.

title(self, str) Set the title of the view to str.

setStandStill(self, flag) Set the stand still indicator on or off.

setAccDist(self, flag) Set the acceleration disturbance indicator on or off.

setMagDist(self, flag) Set the magnetometer disturbance indicator on or off.

A.2.8 showIP()

showIP provides easy access to the IP the computer is using.

18

A.3 sensordata.jar
The Java package sensordata.jar provides the functionality needed to commu-
nicate with the Sensor Fusion app and to integrate the measurements in real
time into for instance Matlab. The documentation of the public interface can
be found here: https://goo.gl/uNKkL3.

A.4 labreport.m
The script labreport.m is provided as help for you to collect the material needed to
present your work to the lab assistant. The report template highlights important
aspects of the lab, and ensures that you have the appropriate plots etc. available.

19

https://goo.gl/uNKkL3

	Introduction
	The Sensor Fusion Android app
	Summary of Relevant Theory
	Representing Rotations using Quaternions
	Sensor Fusion

	Preparations
	Dynamic Equation
	Acceleration Measurement Equation
	Magnetic Field Measurement Equation
	Quaternion Normalization

	Exercises
	Provided Code
	Code Skeleton
	Utility Functions
	Normalize quaternion
	Convert quaternions to Euler angles
	Q(q)
	(q)
	S()
	dQ(q)/dq
	OrientationView
	showIP()

	sensordata.jar
	labreport.m

