
Last updated: 2023-08-14

Solutions for examination in
Sensor Fusion, 2023-08-16

1. (a) ȳ =
(∥p−p1∥−∥p−p4∥

∥p−p2∥−∥p−p4∥
∥p−p3∥−∥p−p4∥

)
+ ē, where ē ∼ N (0, R̄) and R̄ =

(R1+R4 R4 R4

R4 R2+R4 R4

R4 R4 R3+R4

)
.

The key here is to realize that E(ei − e1)(ej − e1) = Ri +R1 if i = j and R1 otherwise.

(b) T̄ (y) = 2 log supx p(y|H1)/p(y|H0) = yTH(HTH)−1HTy

(c) x̂MV = 0.5

x̂mv = Ex|y x = 0.25 · (−4) + 0.1 · (−1) + 0.05 · 0 + 0.15 · 1 + 0.1 · 2 + 0.2 · 3 + 0.1 · 4 + 0.05 · 5 = 0.5

(d) p(x1|x2 = x̂) = N (x1;µ1 + R12(R2)−1(x̂ − µ2), R1 − R12(R2)−1(R12)T)

The given information gives that (x
1

x2) ∼ N
(
(µ

1

µ2), (
R1 R12

(R12)T R2)
)
, to which Lemma 7.1 can be applied to

get the asked for posterior distribution.

(e) Increase Q until a reasonable trajectory is obtained.

As R is chosen to match the sensor specification it should probably be left alone. Laggy estimates
indicate that we trust the motion model too much, and hence Q should be increased.

2. %% Ex 2

load(’data20230816.mat ’);

X = ex2_x; % Given trajectory for part a

5 nf = 3; % Number of landmarks/features

T = 1; % Sample time

I = eye (2);

Z = zeros (2);

10 R = 10^2* eye (2);

%% a:

% The location of the sensor is given. The location of the landmarks can

% be solved as a linear weighted least squares (WLS) problem. It is of

15 % course okay to solve this without SigSys.

%

% The measurement model is

% y^i_k = m^i-x_k + e_k ,

% stacked for i=1,2,3 for each time k.

20
mm = sensormod(@(t, x, u, th) th - repmat(x, [3, 1]), [2, 0, 2*nf, 2*nf]);

mm.pe = blkdiag(R, R, R);

Y = sig(ex2_y ’, 1, [], X’);

M = calibrate(mm, Y);

25 figure (1); clf;

plot(M); hold on;

xplot2(Y)

% Fancy plotting solution (not needed), simply providing the covariance matrix is enough.

Mposa = reshape(M.th, [2, 3])

30 MPa = cat(3, M.P(1:2, 1:2), M.P(3:4, 3:4), M.P(5:6, 5:6))

for i=1:nf

plot2(ndist(Mposa(:,i), MPa(:, :, i)))

end

print(1, ’-depsc ’, fullfile(’fig ’, ’ex2a ’));

35
%% b:

% Extend to a complete SLAM problem , assume a 2D CV model for the sensor

% motion , and simply augment with the landmark positions.

F = [I, T*I; Z, I];

40 Ff = eye(2*nf);

Gf = zeros (2*nf, 2); % How landmarks are affect by process noise.

G = [0.5*T^2*I; T*I];

% Tune the process noise to get reasonable performance , no huge maneuvers expected.

Q = diag ([1 1].^2);

45 Q = [G; Gf]*Q*[G; Gf]’;

% The measurement is relative pos (m^i) for each landmark.

1

Last updated: 2023-08-14

H = repmat([-I Z], [nf, 1]);

Hf = eye(2*nf); % How should landmarks enter the measurement

50 Rtot = blkdiag(R, R, R);

% Use a linear model to simplify.

modelb = lss(blkdiag(F, Ff), [], [H, Hf], [], Q, Rtot , 1);

55 % Create a sig object for the measurement , assume the landmark positions are input.

Yb = sig(ex2_y ’, 1);

% Initialize the filter in the middle of the landmarks , large uncertainy.

x0 = [0; 0; 0; 0]; P0 = diag([0, 0, 10, 10].^2);

xf0 = zeros (2*nf , 1); Pf0 = kron(1e4^2* eye(2), eye(nf));

60
Xhatb = kalman(modelb , Yb , ’alg ’, 2, ’x0’, [x0; xf0], ’P0 ’, blkdiag(P0 , Pf0)); % Filter

figure (2); clf; % Produce the requested plots

xplot2(Xhatb , ’conf ’, 90); hold on

65
% Fancy plotting solution (not needed), simply providing the covariance matrix is enough.

Mposb = reshape(Xhatb.x(end , end -2*nf+1: end), [2, nf])

MPb = Xhatb.Px;

MPb = cat(3, squeeze(MPb(end , 5:6, 5:6)) ,...

70 squeeze(MPb(end , 7:8, 7:8)) ,...

squeeze(MPb(end , 9:10, 9:10)))

for i=1:nf

plot2(ndist(Mposb(:,i), MPb(:, :, i)))

end

75 xlim ([-300 100])

print(2, ’-depsc ’, fullfile(’fig ’, ’ex2b ’));

%% c:

80 % Observations:

% * In (a) "global" positions are obtained whereas in (b) the assumed

% initial position will remain undetermined. The SLAM problem is not

% observable with respect to the initial position.

% * The estimated landmark positions are much more uncertain in (b) than in

85 % (a), as a result of the trajectory being uncertain. The uncertainty

% depends on the process noise , the less process noise , the more certain

% landmark positions.

0 50 100 150 200 250 300 350 400

x1

0

100

200

300

400

x
2

T1

S1

S2

S3

0

13

26

39

52

65

78

91

104

117

130

N([321;374],[0.746,0;0,0.746])

-300 -250 -200 -150 -100 -50 0 50 100

x1

-100

0

100

200

300

400

500

x
2

0

13

26

39

52
65

78

91

104

117

130

N([23.3;380],[15.1,0;0,15.1])

Figure 1: Resulting figures Exercise 2.

3. (a) For convenience, the Kalman filter recursion is given by the time update

x̂k+1|k = Fx̂k|k (1a)

Pk+1|k = FPk|kF
T +Q (1b)

2

Last updated: 2023-08-14

and measurement update

x̂k+1|k+1 = x̂k+1|k + Pk+1|kH
T (HPk+1|kH

T +R)−1(yk −Hx̂k+1|k) (1c)

Pk+1|k+1 = Pk+1|k − Pk+1|kH
T (HPk+1|kH

T +R)−1HPk+1|k (1d)

Make the assumption that x̂Bk|k = x̂Ak|k and PB
k|k = γPA

k|k, and show by induction that this is in fact the
case. The assumption gives

x̂Bk+1|k = Fx̂Bk|k = Fx̂Ak|k =⇒ x̂Bk+1|k = x̂Ak+1|k

PB
k+1|k = FPB

k|kF
T +QB = FγPA

k|kF
T + γQA = γ(PA

k|kF
T +QA) = γPA

k+1|k =⇒ PB
k+1|k = γPA

k+1|k,

that is, the time update preserves the relation between the estimates. Next, consider the measurement
update given then

x̂Bk+1|k+1 = x̂Bk+1|k + PB
k+1|kH

T (HPB
k+1|kH

T +RB)−1(yk −Hx̂Bk+1|k)

= x̂Ak+1|k + γPA
k+1|kH

T (HγPA
k+1|kH

T + γRA)−1(yk −Hx̂Ak+1|k)

= x̂Ak+1|k + PA
k+1|kH

T (HPA
k+1|kH

T +RA)−1(yk −Hx̂Ak+1|k) = x̂Ak+1|k+1 =⇒ x̂Bk+1|k+1 = x̂Ak+1|k+1

PB
k+1|k+1 = PB

k+1|k − PB
k+1|kH

T (HPB
k+1|kH

T +RB)−1HPB
k+1|k

= γPA
k+1|k − γPA

k+1|kH
T (HγPA

k+1|kH
T + γRA)−1HγPA

k+1|k

= γPA
k+1|k − γPA

k+1|kH
T (HPA

k+1|kH
T +RA)−1HPA

k+1|k

= γ
(
PA
k+1|k − PA

k+1|kH
T (HPA

k+1|kH
T +RA)−1HPA

k+1|k

)
= γPA

k+1|k+1 =⇒ PB
k+1|k+1 = γPA

k+1|k+1,

that is, the measurement update keeps the relationship, too.

To summarize, the exercise gives that x̂B0|0 = x̂A0|0 and PB
0|0 = γPA

0|0. This serves as the starting point for

induction. Next, the expressions just derived can then be used to propagate the property to x̂Bk|k = x̂Ak|k
and PB

k|k = γPA
k|k for k ≥ 0.

(b) The same property as in the linear Kalman filter case does also apply for the regular EKF. Note that
in this case F = ∇xf(x) and H = ∇xh(x) in each step, based on the previous estimate. However as
the state estimates in the previous steps are all identical for the two filters, the linearization points
used in the two filters are identical, and hence the linearizations too. With this additional argument
the derivation in (a) still holds.

(c) The Kalman filter property does not hold for the UKF in general. This follows from the fact that when
sigma points are selected, the covariance matrix P is used, yielding different sigma points with the two
different tunings. Different sigma points yields different results when used in the algorithm, hence the
result. (A notable exception is the linear case, where the property holds.)

4. (a) Spurious detection of photons not reflected in a surface is said to be uniformly distributed in the
detection volume, hence

p(y|H0) = U(y; 250, 350) = 1/100.

(b) When a surface is present at distance x, Pd = 0.4 of the detected photons have reflected in the surface,
in which case they have a Gaussian error distribution, whereas the remaining ones are uniformly
distributed in the detection volume, hence

p(y|x,H1) = PdN (y;x,R) + (1− Pd)U(y; 250, 350)

=
0.4√

2π · 0.0043
e−

(y−x)2

2·0.0043 + 0.006.

3

Last updated: 2023-08-14

(c) %% Exercise 4

load data20230816

%% 4c

5 % Given information

Pd = 0.4;

R = 0.0043;

range = 350 -250;

10 p1 = @(x, y) Pd*1/(sqrt (2*pi*R))*exp(-(x-y).^2/(2*R)) + (1-Pd)*1/ range;

p0 = @(x, y) 1/range;

N = numel(ex4_y);

X = 250:0.01:350; % Grid for plotting the LLR

15 LLR = zeros(size(X));

for i=1: numel(LLR) % For simplicity , compute the LLR one x at the time

LLR(i) = sum(log(p1(X(i), ex4_y)/p0(X(i), ex4_y)));

end

20 figure (400); clf;

plot(X, LLR); hold on;

plot(xlim , [0 0], ’-.k’);

xlabel(’Distance [m]’);

ylabel(’LLR ’);

25
% Automate finding the peaks. Each peak is to be considered a possible

% reflecting surface (cf GLR , where the ML estimate of x would be used).

% Only peaks where existance of surface (H1) is more likely than no surface

% (H0) are extracted. Arguments can be made for setting this threshold

30 % lower and at least including one more surface.

[~, I] = findpeaks(LLR , ’MinPeakHeight ’, 0);

disp(X(I))

% 315.2700 316.6400

35 % Indicate the peaks in the plot.

for i=I

plot(X(i)*[1 1], ylim , ’r’);

end

40 print (400, ’-depsc ’, fullfile(’fig ’, ’ex4 ’));

250 260 270 280 290 300 310 320 330 340 350

Distance [m]

-200

-100

0

100

200

300

400

500

600

L
L

R

Figure 2: Resulting log-likelihood plot in Exercise 4.

4

