Solutions for examination in Sensor Fusion, 2023-08-16

The key here is to realize that $\mathrm{E}\left(e^{i}-e^{1}\right)\left(e^{j}-e^{1}\right)=R^{i}+R^{1}$ if $i=j$ and R^{1} otherwise.
(b) $\overline{\boldsymbol{T}}(\boldsymbol{y})=2 \log \sup _{\boldsymbol{x}} \boldsymbol{p}\left(\boldsymbol{y} \mid \mathcal{H}_{1}\right) / \boldsymbol{p}\left(\boldsymbol{y} \mid \mathcal{H}_{0}\right)=\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{H}\left(\boldsymbol{H}^{\boldsymbol{T}} \boldsymbol{H}\right)^{\mathbf{- 1}} \boldsymbol{H}^{\boldsymbol{T}} \boldsymbol{y}$
(c) $\hat{\boldsymbol{x}}^{\mathrm{MV}}=\mathbf{0 . 5}$
$\hat{x}^{\mathrm{MV}}=\mathrm{E}_{x \mid y} x=0.25 \cdot(-4)+0.1 \cdot(-1)+0.05 \cdot 0+0.15 \cdot 1+0.1 \cdot 2+0.2 \cdot 3+0.1 \cdot 4+0.05 \cdot 5=0.5$
(d) $p\left(x^{1} \mid x^{2}=\hat{x}\right)=\mathcal{N}\left(x^{1} ; \mu^{1}+R^{12}\left(R^{2}\right)^{-1}\left(\hat{x}-\mu^{2}\right), R^{1}-R^{12}\left(R^{2}\right)^{-1}\left(R^{12}\right)^{T}\right)$

The given information gives that $\binom{x^{1}}{x^{2}} \sim \mathcal{N}\left(\binom{\mu^{1}}{\mu^{2}},\left(\begin{array}{cc}R^{1} & R^{12} \\ \left(R^{12}\right)^{T} & R^{2}\end{array}\right)\right)$, to which Lemma 7.1 can be applied to get the asked for posterior distribution.
(e) Increase Q until a reasonable trajectory is obtained.

As R is chosen to match the sensor specification it should probably be left alone. Laggy estimates indicate that we trust the motion model too much, and hence Q should be increased.
2. \%\% Ex 2
load('data20230816.mat');
X = ex2_x; \% Given trajectory for part a
5 nf = 3; \% Number of landmarks/features
T = 1; \% Sample time
I = eye(2);
Z = zeros (2);

```
mm = sensormod(@(t, x, u, th) th - repmat(x, [3, 1]), [2, 0, 2*nf, 2*nf]);
```

mm. pe = blkdiag(R, R, R);

M = calibrate (mm, Y);
figure(1); clf;
plot(M); hold on;
xplot2(Y)
\% Fancy plotting solution (not needed), simply providing the covariance matrix is enough.
Mposa $=$ reshape (M.th, [2, 3])
Gf = zeros ($2 * n f, 2$); \% How landmarks are affect by process noise.
$\mathrm{G}=[0.5 * \mathrm{~T} \sim 2 * \mathrm{I} ; \mathrm{T} * \mathrm{I}]$;
\% Tune the process noise to get reasonable performance, no huge maneuvers expected.
$Q=\operatorname{diag}\left(\left[\begin{array}{ll}1 & 1\end{array}\right] .{ }^{\wedge} 2\right) ;$
$45 \mathrm{Q}=[\mathrm{G} ; \mathrm{Gf}] * \mathrm{Q} *[\mathrm{G} ; \mathrm{Gf}]$ ';
\% The measurement is relative pos (m^i) for each landmark.
$\% \%$ c:
\% Observations:
$\%$ * In (a) "global" positions are obtained whereas in (b) the assumed initial position will remain undetermined. The SLAM problem is not observable with respect to the initial position.
$\%$ * The estimated landmark positions are much more uncertain in (b) than in (a), as a result of the trajectory being uncertain. The uncertainty
$\%$ depends on the process noise, the less process noise, the more certain
\% landmark positions.

Figure 1: Resulting figures Exercise 2.
3. (a) For convenience, the Kalman filter recursion is given by the time update

$$
\begin{align*}
\hat{x}_{k+1 \mid k} & =F \hat{x}_{k \mid k} \tag{1a}\\
P_{k+1 \mid k} & =F P_{k \mid k} F^{T}+Q \tag{1b}
\end{align*}
$$

and measurement update

$$
\begin{align*}
& \hat{x}_{k+1 \mid k+1}=\hat{x}_{k+1 \mid k}+P_{k+1 \mid k} H^{T}\left(H P_{k+1 \mid k} H^{T}+R\right)^{-1}\left(y_{k}-H \hat{x}_{k+1 \mid k}\right) \tag{1c}\\
& P_{k+1 \mid k+1}=P_{k+1 \mid k}-P_{k+1 \mid k} H^{T}\left(H P_{k+1 \mid k} H^{T}+R\right)^{-1} H P_{k+1 \mid k} \tag{1d}
\end{align*}
$$

Make the assumption that $\hat{x}_{k \mid k}^{B}=\hat{x}_{k \mid k}^{A}$ and $P_{k \mid k}^{B}=\gamma P_{k \mid k}^{A}$, and show by induction that this is in fact the case. The assumption gives

$$
\begin{aligned}
& \hat{x}_{k+1 \mid k}^{B}=F \hat{x}_{k \mid k}^{B}=F \hat{x}_{k \mid k}^{A} \Longrightarrow \hat{x}_{k+1 \mid k}^{B}=\hat{x}_{k+1 \mid k}^{A} \\
& P_{k+1 \mid k}^{B}=F P_{k \mid k}^{B} F^{T}+Q^{B}=F \gamma P_{k \mid k}^{A} F^{T}+\gamma Q^{A}=\gamma\left(P_{k \mid k}^{A} F^{T}+Q^{A}\right)=\gamma P_{k+1 \mid k}^{A} \Longrightarrow P_{k+1 \mid k}^{B}=\gamma P_{k+1 \mid k}^{A}
\end{aligned}
$$

that is, the time update preserves the relation between the estimates. Next, consider the measurement update given then

$$
\begin{aligned}
\hat{x}_{k+1 \mid k+1}^{B} & =\hat{x}_{k+1 \mid k}^{B}+P_{k+1 \mid k}^{B} H^{T}\left(H P_{k+1 \mid k}^{B} H^{T}+R^{B}\right)^{-1}\left(y_{k}-H \hat{x}_{k+1 \mid k}^{B}\right) \\
& =\hat{x}_{k+1 \mid k}^{A}+\gamma P_{k+1 \mid k}^{A} H^{T}\left(H \gamma P_{k+1 \mid k}^{A} H^{T}+\gamma R^{A}\right)^{-1}\left(y_{k}-H \hat{x}_{k+1 \mid k}^{A}\right) \\
& =\hat{x}_{k+1 \mid k}^{A}+P_{k+1 \mid k}^{A} H^{T}\left(H P_{k+1 \mid k}^{A} H^{T}+R^{A}\right)^{-1}\left(y_{k}-H \hat{x}_{k+1 \mid k}^{A}\right)=\hat{x}_{k+1 \mid k+1}^{A} \Longrightarrow \hat{x}_{k+1 \mid k+1}^{B}=\hat{x}_{k+1 \mid k+1}^{A} \\
P_{k+1 \mid k+1}^{B} & =P_{k+1 \mid k}^{B}-P_{k+1 \mid k}^{B} H^{T}\left(H P_{k+1 \mid k}^{B} H^{T}+R^{B}\right)^{-1} H P_{k+1 \mid k}^{B} \\
& =\gamma P_{k+1 \mid k}^{A}-\gamma P_{k+1 \mid k}^{A} H^{T}\left(H \gamma P_{k+1 \mid k}^{A} H^{T}+\gamma R^{A}\right)^{-1} H \gamma P_{k+1 \mid k}^{A} \\
& =\gamma P_{k+1 \mid k}^{A}-\gamma P_{k+1 \mid k}^{A} H^{T}\left(H P_{k+1 \mid k}^{A} H^{T}+R^{A}\right)^{-1} H P_{k+1 \mid k}^{A} \\
& =\gamma\left(P_{k+1 \mid k}^{A}-P_{k+1 \mid k}^{A} H^{T}\left(H P_{k+1 \mid k}^{A} H^{T}+R^{A}\right)^{-1} H P_{k+1 \mid k}^{A}\right)=\gamma P_{k+1 \mid k+1}^{A} \Longrightarrow P_{k+1 \mid k+1}^{B}=\gamma P_{k+1 \mid k+1}^{A},
\end{aligned}
$$

that is, the measurement update keeps the relationship, too.
To summarize, the exercise gives that $\hat{x}_{0 \mid 0}^{B}=\hat{x}_{0 \mid 0}^{A}$ and $P_{0 \mid 0}^{B}=\gamma P_{0 \mid 0}^{A}$. This serves as the starting point for induction. Next, the expressions just derived can then be used to propagate the property to $\hat{x}_{k \mid k}^{B}=\hat{x}_{k \mid k}^{A}$ and $P_{k \mid k}^{B}=\gamma P_{k \mid k}^{A}$ for $k \geq 0$.
(b) The same property as in the linear Kalman filter case does also apply for the regular EKF. Note that in this case $F=\nabla_{x} f(x)$ and $H=\nabla_{x} h(x)$ in each step, based on the previous estimate. However as the state estimates in the previous steps are all identical for the two filters, the linearization points used in the two filters are identical, and hence the linearizations too. With this additional argument the derivation in (a) still holds.
(c) The Kalman filter property does not hold for the UKF in general. This follows from the fact that when sigma points are selected, the covariance matrix P is used, yielding different sigma points with the two different tunings. Different sigma points yields different results when used in the algorithm, hence the result. (A notable exception is the linear case, where the property holds.)
4. (a) Spurious detection of photons not reflected in a surface is said to be uniformly distributed in the detection volume, hence

$$
p\left(y \mid \mathcal{H}_{0}\right)=\mathcal{U}(y ; 250,350)=1 / 100
$$

(b) When a surface is present at distance $x, P_{d}=0.4$ of the detected photons have reflected in the surface, in which case they have a Gaussian error distribution, whereas the remaining ones are uniformly distributed in the detection volume, hence

$$
\begin{aligned}
p\left(y \mid x, \mathcal{H}_{1}\right) & =P_{d} \mathcal{N}(y ; x, R)+\left(1-P_{d}\right) \mathcal{U}(y ; 250,350) \\
& =\frac{0.4}{\sqrt{2 \pi \cdot 0.0043}} e^{-\frac{(y-x)^{2}}{2 \cdot 0.0043}}+0.006
\end{aligned}
$$

(c) \%\% Exercise 4
load data20230816
\%\% 4c
5% Given information
$\mathrm{Pd}=0.4$;
$\mathrm{R}=0.0043$;
range $=350-250$;
$10 \mathrm{p} 1=@(\mathrm{x}, \mathrm{y}) \mathrm{Pd} * 1 /(\operatorname{sqrt}(2 * \mathrm{pi} * \mathrm{R})) * \exp \left(-(\mathrm{x}-\mathrm{y}) .{ }^{\wedge} 2 /(2 * \mathrm{R})\right)+(1-\mathrm{Pd}) * 1 / \mathrm{range}$; $\mathrm{p} 0=@(\mathrm{x}, \mathrm{y}) 1 /$ range $;$
$\mathrm{N}=$ numel (ex4_y);
$X=250: 0.01: 350 ; \%$ Grid for plotting the LLR
15 LLR $=$ zeros(size(X));
for $i=1:$ numel (LLR) \% For simplicity, compute the LLR one x at the time $\operatorname{LLR}(i)=\operatorname{sum}\left(\log \left(p 1\left(X(i), e x 4 _y\right) / p 0\left(X(i), e x 4 _y\right)\right)\right) ;$
end
20 figure (400); clf;
plot (X, LLR); hold on;
plot(xlim, [0 0], '-.k');
xlabel('Distance [m]');
ylabel('LLR');
25
\% Automate finding the peaks. Each peak is to be considered a possible
\% reflecting surface (cf GLR, where the ML estimate of x would be used).
\% Only peaks where existance of surface (H1) is more likely than no surface
\% (HO) are extracted. Arguments can be made for setting this threshold
30 \% lower and at least including one more surface.
[~, I] = findpeaks(LLR, 'MinPeakHeight', 0);
disp(X(I))
\% $315.2700 \quad 316.6400$
35 \% Indicate the peaks in the plot.
for $i=I$
plot(X(i)*[11 1], ylim, 'r');
end
40 print(400, '-depsc', fullfile('fig', 'ex4'));

Figure 2: Resulting log-likelihood plot in Exercise 4.

