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MATLAB FILES: The files that are needed for the exam are available at
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The exam can be inspected and checked out 2023-09-07 at 12.30–13.00 in Gustaf
Hendeby’s office, room 2A:503, B-house, entrance 27, A corridor to the right.

PRELIMINARY GRADE LIMITS: grade 3 15 points
grade 4 23 points
grade 5 30 points

NB! Solutions should include code and plots and clear cross references between
these. Mark all print-outs with your AID-number, date, course code, and exam
code.

Good luck!
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STARTING MATLAB (Linux)
Type matlab & in a terminal.

PRINTING (Linux):
Printouts of regular files can be sent to a specific printer using the command
lp -d printername file.pdf

in a terminal. (Exchange printername for the actual printer name.) When
selecting File/Print for a Simulink diagram, select the target printer by adding
-Pprintername

in the Device option box.

ADDING YOUR AID ETC TO PRINTOUTS:
Text can be added in Matlab plots with the commands title and gtext, and for
scope plots in Simulink by right clicking and then change the Axes properties.
In Simulink diagrams it is possible to double click any empty area and then
simply add text by typing it.

FURTHER GUIDELINES:

• Make sure to read all exercises and prioritize before getting started. The
level of difficulty is not necessarily increasing.

• Make sure to motivate every step of your solution carefully!

• Comment nontrivial steps in the code; including model choices and tuning.

• Put code for each exercise on a separate printout and keep all related
paper (hand written material, code, and plots) together when you hand
in your solution.
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1. (a) Consider a setup of 4 sensors, similar to the one in lab 1. The sensors
measure the time when a sound pulse is detected, the exact time when
the pulse is broadcast is unknown. The resulting measurements (where
time has been converted to distance) are assumed to be:

yi = r0 + ∥p − pi∥ + ei,

where r0 handles the unknown time of the broadcast, p is the position
of the sound source, pi the position of the ith sensor, and ei ∼ N (0, Ri)
are mutually independent. Give the measurement equation and noise
characteristics for the (virtual) measurement:

ȳ =
(
y1 − y4 y2 − y4 y3 − y4)T !

(Do not forget to specify the resulting measurement noise, ē.) (2p)

(b) Provide the GLR test statistics to decide between H0 and H1 given the
measurement y: {

y = e under H0

y = Hx + e under H1

Assume that e ∼ N (0, I) and x is unknown. (2p)

(c) Given the posterior p(x|y) in Figure 1, give the minimum variance es-
timate, x̂mv, of x! (2p)

(d) Assume x1 ∼ N (µ1, R1), x2 ∼ N (µ2, R2), and cov(x1, x2) = R12. Give
the posterior distribution p(x1|x2 = x̂)! (2p)

(e) A unscented Kalman filter (UKF) is used to track an airplane. The
result is very “laggy”, and the estimates do not follow the expected
movements of the plane and react noticeably late. The measurement
noise covariance matrix R was derived from the data sheet provided by
the sensor manufacturer.
How would you re-tune the filter parameters (R and Q) to get a more
reasonable result? (2p)
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Figure 1: Posterior for assignment 1(c).
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2. Assume an area with three distinct landmarks with the positions m1, m2, and
m3. A sensor mounted on an RC car is moving around in the area, observing
the relative position of the landmarks in the global Cartesian coordinate
system. At each time, and for each landmark, the following measurement is
obtained

yi
k = mi − xk + ei

k,

where xk is the position of the sensor, and the measurement noise ek ∼
N (0, R). The covariance matrix R = 102I.
The file data20230816.mat contains the variables ex2_x, with an (approx-
imate) trajectory (positions, one position per column) for the sensor, and
ex2_y, with measurements from the sensor collected at 1 Hz. The measure-
ments of the landmarks are stacked, i.e., the first two values in each column
is y1 according to the notation above, the next two y2, and so on. (That is,
the landmark association is assumed known.)

(a) Assume that the sensor/car positions are given, and estimate the posi-
tions of the landmarks. (The mapping problem.) Make sure to carefully
motivate what you are doing. Plot the estimated landmark positions,
together with the trajectory in a plot. Provide information about the
uncertainty of the estimate. (4p)

(b) Now assume both landmark positions and the sensor trajectory are
unknown. Repeat the task in (a) while simultaneously estimating the
sensor trajectory. Illustrate the estimated trajectory, as well as the
position and uncertainty of the landmarks at the end (both with 90 %
covariance ellipses). (4p)

(c) Discuss the difference in the results in (a) and (b)! (2p)
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3. The topic of this exercise is to explore the result of scaling the process
and measurement noise covariance. Therefore, assume two different Kalman
filters both using the model

xk+1 = Fxk + wk

yk = Hxk + ek,

where the only difference is the scaling of the noise. Filter A uses the initial
uncertainty P A

0 , the process noise covariance cov wk = QA, and the measure-
ment noise cov ek = RA. Filter B uses P B

0 = γP A
0 , cov wk = QB = γQA,

and cov ek = RB = γRA, where γ > 0. Both filters are initialized with the
same state estimate x̂B

0|0 = x̂A
0|0.

(a) Derive expressions for Filter B’s filter estimate (x̂B
k|k and P B

k|k) in terms
of Filter A’s filter estimate (x̂A

k|k and P A
k|k), and γ.

Hint: One convenient way to solve this task is to use induction, and to
initially study the time and measurement update steps independently,
and then combine the results at the end. (6p)

Now, substitute the linear model above for the nonlinear model

xk+1 = f(xk) + wk

yk = h(xk) + ek,

everything else is the same. Now answer the following:

(b) For this model, does the result in (a) hold if you instead use a regular
extended Kalman filter (EKF)? Motivate your answer carefully! (2p)

(c) For this model, does the result in (a) hold for the nonlinear model if you
instead use a regular unscented Kalman filter (UKF)? Motivate your
answer carefully! (2p)
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Figure 2: Experimental setup for the photon counting lidar generating the stud-
ied dataset.

4. The variable ex4_y in the file data20191031.mat contains measurements
from a “photon counting” lidar (see Figure 2). In theory, the lidar works by
sending out short laser pulses, and then registering when the first photon
comes back, from which the distance to the reflecting surface is computed.
However, in practice, many of the photons detected do not come from re-
flections but are simply random noise.
This yields measurements with the following properties:

• A detected photon was with probability 40 % reflected in a surface, and
is otherwise noise.

• A reflected photon results in the measurement y = x+e, where x is the
distance to the surface, and e ∼ N (0, 0.0043) is measurement noise.

• A random photon results in the measurement y = e, where e ∼ U(250, 350)
is uniformly distributed in the measurement volume (here between 250
and 350 meters).

(a) Derive the probability of a spurious (random) photon detection at dis-
tance y, p(y|H0), given there is no reflecting surface at distance x (the
H0 hypothesis)! (2p)

(b) Derive the probability to obtain the measurement y given that there is
a reflecting surface at distance x (the H1 hypothesis), p(y|x, H1)! (4p)

(c) Derive and plot the log-likelihood-ratio log
(
p(y|x, H1)/p(y|H0)

)
for a

reflecting surface at distance x compared to no target at all! Plot the
result for x in the range 250 to 350, and determine if there are any
surfaces and if so at what distances!
Hint: The individual probabilities quickly become very small, to avoid
numerical issues take the logarithm of each component individually
before they are combined. (4p)

Be sure to motivate all your your answers.
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