
EXAMINATION IN TSRT14 SENSOR FUSION
ROOM: Asgård, Egypten, Hunn, Olympen, Roxen

TIME: 2023-06-01 at 8:00–12:00

EDUCODE: TSRT14 Sensor Fusion

MODULE: DAT1

DEPARTMENT: ISY

NUMBER OF EXERCISES: 4

RESPONSIBLE TEACHER:
Gustaf Hendeby, tel. 013-28 58 15, gustaf.hendeby@liu.se

VISITS: cirka 09:00, 10:00, 11:00

COURSE ADMINISTRATOR:
Ninna Stensgård, 013-28 22 25, ninna.stensgard@liu.se

APPROVED TOOLS: 1. Book: F. Gustafsson, “Statistical Sensor Fusion”, any
edition.

PROVIDED MATERIAL:
1. Lecture slides; available from /courses/TSRT14/
2. Signal and Systems toolbox manual; available from /courses/TSRT14/
3. Current up to date errata for the textbook; available from /courses/TSRT14/

MATLAB FILES: The files that are needed for the exam are available at
/courses/TSRT14/.

SOLUTIONS: Available at the course homepage after the exam.

The exam can be inspected and checked out 2023-06-22 at 12.30–13.00 in Gustaf
Hendeby’s office, room 2A:503, B-house, entrance 27, A corridor to the right.

PRELIMINARY GRADE LIMITS: grade 3 15 points
grade 4 23 points
grade 5 30 points

NB! Solutions should include code and plots and clear cross references between
these. Mark all print-outs with your AID-number, date, course code, and exam
code.

Good luck!

gustaf.hendeby@liu.se
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STARTING MATLAB (Linux)
Type matlab & in a terminal.

PRINTING (Linux):
Printouts of regular files can be sent to a specific printer using the command
lp -d printername file.pdf

in a terminal. (Exchange printername for the actual printer name.) When
selecting File/Print for a Simulink diagram, select the target printer by adding
-Pprintername

in the Device option box.

ADDING YOUR AID ETC TO PRINTOUTS:
Text can be added in Matlab plots with the commands title and gtext, and for
scope plots in Simulink by right clicking and then change the Axes properties.
In Simulink diagrams it is possible to double click any empty area and then
simply add text by typing it.

FURTHER GUIDELINES:

• Make sure to read all exercises and prioritize before getting started. The
level of difficulty is not necessarily increasing.

• Make sure to motivate every step of your solution carefully!

• Comment nontrivial steps in the code; including model choices and tuning.

• Put code for each exercise on a separate printout and keep all related
paper (hand written material, code, and plots) together when you hand
in your solution.

2



1. The following questions all require relatively short answers, a few sentences
or short calculations should be enough. (Note, an incorrect statement will
result in 0 p on that subexercise.)

(a) Based on your experiences from lab 2 “Orientation estimation using
smartphone sensors”, shortly describe how you calibrated the accelerom-
eter, gyroscope, and magnetometer. (2p)

(b) Figure 1 contains the cost functions for position estimation using four
different sensor setups. Pair the following sensor networks with the
matching representative cost function:
(i) Two time difference of arrival (TDOA) sensors
(ii) Two time of arrival (TOA) sensors
(iii) A range-bearing radar
(iv) A direction of arrival (DOA) sensor
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Figure 1: Cost functions for position estimation for the different sensor setups
in Exercise 1b.

(2p)
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(c) Assume two estimates of a parameter x0,

x1 = x0 + e0 + e1

x2 = x0 + e0 + e2,

where x1 ∼ N (5, 6), x2 ∼ N (4, 7), and e0 ∼ N (0, 4). Furthermore,
e0, e1, and e2 are all mutually independent. Given this information,
provide an optimal estimate x = N (x̂, P ) of x0. (2p)

(d) Which of the following statements are correct?
A. Properly tuned, the unscented Kalman filter (UKF) is always a

better alternative than the extended Kalman filter (EKF).
B. The Kalman filter is the best linear unbiased estimator (BLUE) for

linear Gaussian problems.
C. The Kalman filter reaches the Cramér-Rao lower bound (CRLB)

for all linear systems.
D. The weighted least squares (WLS) is an optimal estimator for linear

Gaussian batch problems.
E. The maximum likelihood estimator (MLE) is equivalent to the WLS,

it has only been derived in a different way.
(2p)

(e) You are trying to use a SIR particle filter (PF) to estimate the state of
the following nonlinear system
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+ ek,

where neither the process noise nor the measurement noise is extreme.
You are having problems with particle depletion, suggest how to im-
prove the filter performance. (2p)
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2. Assume an area with three distinct landmarks with the positions m1, m2, and
m3. A sensor mounted on an RC car is moving around in the area, observing
the relative position of the landmarks in the global Cartesian coordinate
system. At each time, and for each landmark, the following measurement is
obtained

yi
k = mi − xk + ei

k,

where xk is the position of the sensor, and the measurement noise ek ∼
N (0, R). The covariance matrix R = 102I.
The file data20230601.mat contains the variables ex2_m, with approximate
positions of the landmarks (one landmark per column), and ex2_y, with
measurements from the sensor collected at 1 Hz. The measurements of the
landmarks are stacked, i.e., the first two values in each column is y1 according
to the notation above, the next two y2, and so on. (That is, the landmark
association is assumed known.)

(a) Assume that the given landmark locations are exact, and estimate the
trajectory of the sensor. Make sure to carefully motivate what you
are doing. Plot the estimated trajectory, with 90 % covariance ellipses,
together with the landmark positions in a plot. (4p)

(b) Now assume that the landmark positions are only estimates, mi ∼
N (mi, Rm), where Rm = 502I. Repeat the task in (a), with this added
uncertainty of the landmarks. Illustrate the estimated trajectory, as
well as location and uncertainty of the landmark positions at the end
(both with 90 % covariance ellipses). (4p)

(c) Rerun your solution in (a) with the landmark positions from (b). Com-
pare the resulting trajectory in a plot. Reflect on the result. (2p)

5



3. Assume N linear measurements

yk = Hkx + ek, ek ∼ L(λ),

where L(λ) is the Laplace distribution, which is characterized by the pdf
p(e|λ) = 1

2 λe−λ|e|. Furthermore, you may assume that x is observable given
the available measurements and the measurement noise is independent.

(a) Derive the best linear unbiased estimator (BLUE), xblue and the corre-
sponding covariance of the estimate, for the problem above. (3p)

(b) Derive the maximum likelihood estimate (MLE) formulation of the prob-
lem above, and show that it is equivalent to minimizing the sum of the
absolute value of the difference between the predicted and obtained
measurement. (3p)

(c) Compute the Cramér-Rao lower bound (CRLB) for the above estima-
tion problem. Use that it can be shown that the Fisher information
exists even if the derivative of log(p(y|x)) is discontinuous, as long as
the computed Fisher information is positive and limited. (You do not
have to show this.) (4p)
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4. The examiner sometimes uses the Sensor Fusion app to track his movements.
In this case as he has been walking some stairs. Your task is to track the
height profile of his walk!
During the walk, the examiner held his phone horizontally in his hand, with
the z-axis of the accelerometer pointing up and aligned with gravity. The
following data is available in the file data20230601.mat:

ex4_acc The accelerometer measurements from the walk; x-, y-, and z-
component in the three columns, given in m/s2.

ex4_prs The barometric pressure measurements from the walk given in hPa;
NaN represents no measurement available. The frequency is lower than
for the accelerometer.

ex4_t The time stamps for the measurements from the walk in seconds.
ex4_c0cm_acc, ex4_c0cm_prs Acceleration and pressure measurements, re-

spectively, from a calibration experiment where the phone is placed flat
on the floor, at the lowest point. Assume this as height 0 m.

ex4_c78cm_acc, ex4_c78cm_prs Another calibration experiment, this time
at height 78 cm.

For the purpose of this experiment, the relation between the height and the
air pressure can be approximated with

yk = C1hk + C0,

where yk is the measured pressure, hk the current height, and C1 and C0
constants.
To obtain full credits, the exercise should be solved with techniques inspired
by the methods discussed in the course, and all steps be well motivated.

(a) Use the calibration datasets to determine the constants in the given
height–pressure relation! Use the model to compute the height directly
from the pressure measurements, and plot the result!
Hint: As there are NaNs in the measurements, use a cross to mark the
computed heights in the plot. (2p)

(b) Suggest a motion model that can be used to estimate the height of the
phone and the accelerometer bias. Treat the z-accelerations as input to
the model! Simulate the model and plot the result in a separate figure!
Estimate the bias from the calibration datasets. (2p)

(c) Use a filter to combine the pressure measurements with the motion
model! Plot the result in the plot in (a)!
Hint: The problem formulation does not fit easily in the toolbox, it is
most likely easier to implement the filter yourself.
Use ∼isnan(y(k)) to test if there is a measurement available for time k.

(6p)

Hint: Make sure to document how you think. Partial credits will be awarded
for the correct idea even if your implementation does not work correctly.
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