Solutions for examination in Sensor Fusion, 2022-08-17

1. (a) In the lab gravity is used to indicate down, during acceleration the accelerometer measures both acceleration and gravity, hence "down" is shifted.
A suitable outlier detector is give by $T=\| \| y_{a}\|-\| g\| \|>T$ for a suitable threshold $T_{\text {th }}$.
(b)

$$
T=2 \log \frac{\mathcal{N}(y ; \mu, R)}{\mathcal{N}(0 ; \mu, R)}=\mu^{T} R^{-1} \mu-2 y^{T} R^{-1} \mu \gtrless \mathcal{H}_{0}^{\mathcal{H}_{1}} T_{\mathrm{th}}
$$

The test statistic T follows from the Neyman-Pearson theorem, and T_{th} is a chosen threshold. (The test statistic can also be formulated without the log, only resulting in different threshold values.)
(c) Increase \boldsymbol{Q}.

The estimate follows the measurements (which matches a reasonable intersection) too slowly, resulting in an overshoot. A more responsive filter is obtained using higher process noise.
(d) $\mathcal{N}\left(\binom{1.25}{2.4},\left(\begin{array}{cc}0.125 & 0 \\ 0 & 0.199\end{array}\right)\right)$

The estimates are independent, hence the fusion formula can be used.
(e) (i), (iv), (v)
2. \%\% Exercise 2
load ('data20221020.mat')
$\mathrm{Y}=\mathrm{sig}\left(\mathrm{ex} 2_{\mathrm{L}} \mathrm{y}\right.$ ', .5);
5 \%\% 2a
sm = exsensor('radar'); \% Construct a measurement model
sm.th $=$ [0;0]; \% Radar location
sm.pe $=$ diag ([100, 0.1]. ${ }^{\wedge}$) ; \% Measurement noise
$10 \% \% 2 b$
\% To decide on a motion model, look at the trajectory from the measurements
xmeas $=\left[\operatorname{ex} 2 _y(:, 1) . * \cos \left(e x 2 _y(:, 2)\right), \operatorname{ex} 2 _y(:, 1) . * \sin \left(e x 2 _y(:, 2)\right)\right] ;$
figure (1); clf; \% Plot the measurements as red crosses
plot(xmeas (:, 1), xmeas(:, 2), 'rx');
\% The measurements seem to describe a circle, use a CT model
mm = exmotion('ctpv2d', .5); \% Set sampling frequency of 2 Hz
20 \% \% 2c
\% Obtain the initial position from the first measurement
mm.x0 = [xmeas (1, :), 0, 0, 0];
\% Set the uncertainty of the initial state with the following reasoning:
$\%$ - the target is quite far away but the initialization is quite ok
\% - the target's initial heading is in radians and very uncertain
\% - the target's initial angular velocity is in rad/s and very uncertain
mms.px0 = blkdiag(10*eye(2), 100*eye(1), 3, 3);
\% Set the process noise covariance with the following reasoning:
30% - Look at the structure of the matrix given with the original motion model
$\%$ - The change in velocity needs to be allowed to be fairly large
\% - The change in angular velocity needs to be much smaller since the state
$\%$ is in rad/s
mm.pv = diag([0, 0, 500, 0, 0.1]. ${ }^{\text {2 } 2) ; ~}$
\% Combine the motion model and the measurement model
$\mathrm{mms}=$ addsensor (mm, sm);
\% Do UKF and plot results with confidence intervals
kf(mms, Y)
xplot2(xukf, 'conf', 90);
print(1, '-depsc', fullfile('fig', 'ex2c'));
$\% \% 2 d$

45 \% Run PF with 1000 particles and plot results with confidence intervals
xpf $=$ pf(mms, Y, 'Np', 1000);

```
figure(2), clf,
plot(xmeas(:, 1), xmeas(:, 2), 'rx');
hold all
50 xplot2([], xpf, 'conf', 90);
print(2,'-depsc', fullfile('fig', 'ex2d'));
```


Figure 1: Figures for Exercise 2.
3. (a) To derive the time update, insert the given information into the Bayesian time update equation. Similarly to the point-mass filter, the integrals turn into sums over the discrete state values:

$$
\begin{aligned}
p_{k \mid k-1}^{i}=p\left(x_{k}=s^{i} \mid y_{1: k-1}\right)=\int p(& \left.x_{k}=s^{i} \mid x_{k-1}\right) p\left(x_{k-1} \mid y_{1: k-1}\right) d x_{k-1} \\
& =\sum_{j=1}^{n} p\left(x_{k}=s^{i} \mid x_{k-1}=s^{j}\right) p\left(x_{k-1}=s^{j} \mid y_{1: k-1}\right)=\sum_{j=1} \Pi_{i j} p_{k-1 \mid k-1}^{j} .
\end{aligned}
$$

This can be simplified further if p is a vector comprising the p^{i},

$$
p_{k \mid k-1}=\Pi p_{k-1 \mid k-1} .
$$

(b) Similarly, insert the given information into the Bayesian measurement update equation (denote $\ell_{k}^{i}=$ $p\left(y_{k} \mid x_{k}=s^{i}\right)$, and ℓ_{k} the matching vector notation):

$$
p_{k \mid k}^{i}=p\left(x_{k}=s^{i} \mid y_{1: k}\right)=\frac{p\left(y_{k} \mid x_{k}=s^{i}\right) p\left(x_{k}=s^{i} \mid y_{1: k-1}\right)}{p\left(y_{k} \mid y_{1: k-1}\right)}=\frac{\ell_{k}^{i} p_{k \mid k-1}^{i}}{\sum_{j=1}^{n} \ell_{k}^{j} p_{k \mid k-1}^{j}} .
$$

Using vector notation the expression can be further simplified

$$
p_{k \mid k}=\frac{\ell_{l} \odot p_{k \mid k-1}}{\left\langle\ell_{l}, p_{k \mid k-1}\right\rangle}
$$

where \odot denotes elementwise multipliction and $<\cdot, \cdot>$ scalar product.
4. \%\% Exercise 2
load('data20221020.mat')
\% \% Exercise 4a
5 \% The accelerometer acts as an inclinometer, to estimate the angle x. In $\%$ the starting position $x=0$ (see the figure). Given the application, $\%$ angles between roughly 0 and pi/4 makes sense. Initially, the IMU $\%$ measures $[-9.82 ; 0 ; 0]$. The measurement equation is:
$\% \quad\left[\cos \left(x_{-} k\right) \sin \left(x_{-} k\right) \quad 0\right][-9.82] \quad\left[-\cos \left(x_{-} k\right)\right]$
 \% where y_k is the accelerometer measurement.
\% Note: (1) As the rotation is purely around z, the z component is
$\%$ uninteresting ($=0$). Hence, use only the xy components as measurements.
15% (2) The magnitute is irrelevant, hence its possible (but not required) to \% normalize the measurements, to obtain the measurement equation:
$\% \quad\left[-\cos \left(x_{-} k\right)\right]$
$\% y_{-} k /\left|\left|y_{-} k\right|\right|=\left[\sin \left(x_{-} k\right)\right]+e_{-} k$,
\% assuming e_k to be Gaussian.
20
\% Normalize the acc measurements
acc $=$ ex4_acc./repmat (sum (ex4_acc.^2, 2), [1 3 3) ;
$\mathrm{N}=\operatorname{size}(\mathrm{acc}, 1)$;
$T=1 / 100 ; \%$ Measurement frequency
25
\% Measurement function
$h=@(t, x, u, t h)[-\cos (x) ; \sin (x)] ;$
sm $=$ sensormod(h, [1 0 2 0 $]$); \% Sensor model
$R=0.01^{\wedge} 2$ * eye(2); \% Set covariance to something reasonable and diagonal
30 sm.pe $=R$;
Ya $=\operatorname{sig}(\operatorname{acc}(:, 1: 2), 100,[], z e r o s(N, 0))$;
xa $=$ zeros (N, 1); \% Collect angle estimates
Pa $=$ zeros (N, 1, 1); \% Collect covaraiances
35
xnls = estimate(sm, Ya(i));
xa(i, :) = xnls.x0;
Pa(i, :, :) = var (xnls.px0);
end
40 xhata $=\operatorname{sig}(Y a \cdot y, 100,[], \quad x a,[], P a)$;
\% Plot results
figure(1); clf;
xplot(xhata, 'conf', 90);
print(1, '-depsc', fullfile('fig', 'ex4a'))
\%\% Exercise 4b
\% Using the gyroscope as input yields standard dead reckoning (where only
$\%$ the z axis must be considered.
$\% x_{-} k=x_{-} k-1+T u_{-} k-1+w_{-} k-1$,
50% where $u_{-} k$ is the z coment of the gyro measurements, T the sample time,
$\%$ and $w _k-1$ is process noise, which is approximated with 0 when
\% integrating, but can be used to compute the uncertainty in the estimate.
$\mathrm{xb}=$ zeros $(\mathrm{N}, 1)$; \% Vector to collect all angle estimates
$55 \mathrm{x} 0=0$;
$\mathrm{PO}=0.1$;
$Q=T * .1^{\wedge} 2 ; \quad \%$ The process noise is a tuning variable, but should be reasonable
$\mathrm{xb}(1)=\mathrm{x} 0$; $\%$ Define initial angle
\% Dead reckoning the angle (keeping track of the covariance is strictly not
60 \% part of the exercise but gives a bit more understanding for the solution.
$\mathrm{Pb}=$ zeros (N, 1, 1);
$\mathrm{Pb}(1,:,:)=\mathrm{P} 0$;
for $i=2: N$
$\mathrm{xb}(\mathrm{i})=\mathrm{xb}(\mathrm{i}-1)+\mathrm{T} * \mathrm{ex} 4$ _gyr(i,3);
$\mathrm{Pb}(\mathrm{i},:,:)=\operatorname{Pb}(i-1,:,:)+\mathrm{Q}$;
end
xhatb $=\operatorname{sig}(z \operatorname{ros}(N, 0), 100,[], x b,[], P b)$;
\% Plot results
70 figure (2); clf
xplot (xhatb, 'conf', 90)
print(2, '-depsc', fullfile('fig', 'ex4b'))
\%\% Exercise 4c

(c) Combined estimates.

Figure 2: Figures for exercise 4.

```
    % Make motion model
    f = @(t, x, u, th) x + T*u;
    % Combine models into an NL object
80 mms = nl(f, h, [1 1 2 0], 100);
    % Make a sig object with the acc measurements and gyro inputs
    Yc = sig(acc(:, 1:2), 100, ex4_gyr(:,3));
    % Specify initial state
mms.x0 = x0;
    % Specify uncertainties measurements and initial state
    mms.px0 = P0;
    mms.pe = R;
90 mms.pv = Q;
    % Run EKF
    xhatc = ekf(mms, Yc);
95 % Plot results and compare to previous results
figure(3); clf
xplot(xhata, xhatb, xhatc, 'conf', 90,...
    'legend', {'(a) Snapshot', '(b) Dead reckoning', '(c) EKF'});
print(3, '-depsc', fullfile('fig', 'ex4c'))
```

