
Last updated: 2024-05-18

Solutions for examination in
Sensor Fusion, 2022-10-20

1. (a) In the lab gravity is used to indicate down, during acceleration the accelerometer measures
both acceleration and gravity, hence “down” is shifted.

A suitable outlier detector is give by T = |∥ya∥ − ∥g∥| > T for a suitable threshold Tth.

(b)

T = 2 log
N (y;µ,R)

N (y; 0, R)
= 2yTR−1µ − µTR−1µ ≷H1

H0
Tth

The test statistic T follows from the Neyman-Pearson theorem, and Tth is a chosen threshold. (The
test statistic can also be formulated without the log, only resulting in different threshold values.)

(c) Increase Q.

The estimate follows the measurements (which matches a reasonable intersection) too slowly, resulting
in an overshoot. A more responsive filter is obtained using higher process noise.

(d) N
((

1.25
2.4

)
,

(
0.125 0

0 0.199

))
The estimates are independent, hence the fusion formula can be used.

(e) (i), (iv), (v)

2. %% Exercise 2

load(’data20221020.mat ’)

Y = sig(ex2_y ’, .5);

5 %% 2a

sm = exsensor(’radar ’); % Construct a measurement model

sm.th = [0;0]; % Radar location

sm.pe = diag ([100, 0.1].^2); % Measurement noise

10 %% 2b

% To decide on a motion model , look at the trajectory from the measurements

xmeas = [ex2_y(:, 1).*cos(ex2_y(:, 2)), ex2_y(:, 1).*sin(ex2_y(:, 2))];

figure (1); clf; % Plot the measurements as red crosses

plot(xmeas(:, 1), xmeas(:, 2), ’rx ’);

15 hold all

% The measurements seem to describe a circle , use a CT model

mm = exmotion(’ctpv2d ’, .5); % Set sampling frequency of 2Hz

20 %% 2c

% Obtain the initial position from the first measurement

mm.x0 = [xmeas(1, :), 0, 0, 0];

% Set the uncertainty of the initial state with the following reasoning:

% - the target is quite far away but the initialization is quite ok

25 % - the target ’s initial velocity is much more uncertain

% - the target ’s initial heading is in radians and very uncertain

% - the target ’s initial angular velocity is in rad/s and very uncertain

mms.px0 = blkdiag (10* eye (2), 100* eye (1), 3, 3);

% Set the process noise covariance with the following reasoning:

30 % - Look at the structure of the matrix given with the original motion model

% - The change in velocity needs to be allowed to be fairly large

% - The change in angular velocity needs to be much smaller since the state

% is in rad/s

mm.pv = diag([0, 0, 500, 0, 0.1].^2);

35
% Combine the motion model and the measurement model

mms = addsensor(mm, sm);

% Do UKF and plot results with confidence intervals

40 xukf = ukf(mms , Y);

xplot2(xukf , ’conf ’, 90);

print(1, ’-depsc ’, fullfile(’fig ’, ’ex2c ’));

%% 2d

45 % Run PF with 1000 particles and plot results with confidence intervals

xpf = pf(mms , Y, ’Np’, 1000);

1

Last updated: 2024-05-18

figure (2), clf ,

plot(xmeas(:, 1), xmeas(:, 2), ’rx ’);

hold all

50 xplot2 ([], xpf , ’conf ’, 90);

print(2, ’-depsc ’, fullfile(’fig ’, ’ex2d ’));

-0.5 0 0.5 1 1.5 2 2.5 3

x1 10
4

-5000

0

5000

10000

15000

20000

x
2

0

40

80

120

160
200

240

280

320

360

400

(a) Exercise 2(b)

-0.5 0 0.5 1 1.5 2 2.5 3

x1 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

x
2

0

40

80

120

160

200
240

280

320

360

400

(b) Exercise 2(c)

Figure 1: Figures for Exercise 2.

3. (a) To derive the time update, insert the given information into the Bayesian time update equation. Simi-
larly to the point-mass filter, the integrals turn into sums over the discrete state values:

pik|k−1 = p(xk = si|y1:k−1) =

∫
p(xk = si|xk−1)p(xk−1|y1:k−1) dxk−1

=
n∑

j=1

p(xk = si|xk−1 = sj)p(xk−1 = sj |y1:k−1) =
∑
j=1

Πijp
j
k−1|k−1.

This can be simplified further if p is a vector comprising the pi,

pk|k−1 = Πpk−1|k−1.

(b) Similarly, insert the given information into the Bayesian measurement update equation (denote ℓik =
p(yk|xk = si), and ℓk the matching vector notation):

pik|k = p(xk = si|y1:k) =
p(yk|xk = si)p(xk = si|y1:k−1)

p(yk|y1:k−1)
=

ℓikp
i
k|k−1∑n

j=1 ℓ
j
kp

j
k|k−1

.

Using vector notation the expression can be further simplified

pk|k =
ℓl ⊙ pk|k−1

< ℓl, pk|k−1 >
,

where ⊙ denotes elementwise multipliction and < ·, · > scalar product.

2

Last updated: 2024-05-18

4. %% Exercise 2

load(’data20221020.mat ’)

%% Exercise 4a

5 % The accelerometer acts as an inclinometer , to estimate the angle x. In

% the starting position x = 0 (see the figure). Given the application ,

% angles between roughly 0 and pi/4 makes sense. Initially , the IMU

% measures [-9.82; 0; 0]. The measurement equation is:

% [cos(x_k) sin(x_k) 0][-9.82] [-cos(x_k)]

10 % y_k = [-sin(x_k) cos(x_k) 0][0] + e_k = 9.82[sin(x_k)] + e_k ,

% [0 0 1][0] [0]

% where y_k is the accelerometer measurement.

% Note: (1) As the rotation is purely around z, the z component is

% uninteresting (=0). Hence , use only the xy components as measurements.

15 % (2) The magnitute is irrelevant , hence its possible (but not required) to

% normalize the measurements , to obtain the measurement equation:

% [-cos(x_k)]

% y_k/|| y_k|| = [sin(x_k)] + e_k ,

% assuming e_k to be Gaussian.

20
% Normalize the acc measurements

acc = ex4_acc ./ repmat(sum(ex4_acc .^2,2) ,[1 3]);

N = size(acc , 1);

T = 1/100; % Measurement frequency

25
% Measurement function

h = @(t, x, u, th) [-cos(x) ; sin(x)];

sm = sensormod(h, [1 0 2 0]); % Sensor model

R = 0.01^2 * eye(2); % Set covariance to something reasonable and diagonal

30 sm.pe = R;

Ya = sig(acc(:, 1:2), 100, [], zeros(N, 0));

xa = zeros(N, 1); % Collect angle estimates

Pa = zeros(N, 1, 1); % Collect covaraiances

35 for i = 1:N

xnls = estimate(sm , Ya(i));

xa(i, :) = xnls.x0;

Pa(i, :, :) = var(xnls.px0);

end

40 xhata = sig(Ya.y, 100, [], xa, [], Pa);

% Plot results

figure (1); clf;

xplot(xhata , ’conf ’, 90);

print(1, ’-depsc ’, fullfile(’fig ’, ’ex4a ’))

45
%% Exercise 4b

% Using the gyroscope as input yields standard dead reckoning (where only

% the z axis must be considered.

% x_k = x_k -1 + T u_k -1 + w_k -1,

50 % where u_k is the z coment of the gyro measurements , T the sample time ,

% and w_k -1 is process noise , which is approximated with 0 when

% integrating , but can be used to compute the uncertainty in the estimate.

xb = zeros(N,1); % Vector to collect all angle estimates

55 x0 = 0;

P0 = 0.1;

Q = T*.1^2; % The process noise is a tuning variable , but should be reasonable

xb(1) = x0; % Define initial angle

% Dead reckoning the angle (keeping track of the covariance is strictly not

60 % part of the exercise but gives a bit more understanding for the solution.

Pb = zeros(N, 1, 1);

Pb(1, :, :) = P0;

for i = 2:N

xb(i) = xb(i-1) + T * ex4_gyr(i,3);

65 Pb(i, :, :) = Pb(i-1, :, :) + Q;

end

xhatb = sig(zeros(N, 0), 100, [], xb, [], Pb);

% Plot results

70 figure (2); clf

xplot(xhatb , ’conf ’, 90)

print(2, ’-depsc ’, fullfile(’fig ’, ’ex4b ’))

%% Exercise 4c

75 % Now simply combine the results in a and b.

3

Last updated: 2024-05-18

0 2 4 6 8

Time

-1

-0.5

0

0.5

1

1.5

x
1

(a) Estimated knee angle using the measurement
model for the accelerometer measurements.

0 2 4 6 8

Time

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
1

(b) Estimated knee angle using the motion model with
the gyroscope measurements as an input.

0 2 4 6 8

Time

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
1

(a) Snapshot

(b) Dead reckoning

(c) EKF

(c) Combined estimates.

Figure 2: Figures for exercise 4.

% Make motion model

f = @(t, x, u, th) x + T*u;

% Combine models into an NL object

80 mms = nl(f, h, [1 1 2 0], 100);

% Make a sig object with the acc measurements and gyro inputs

Yc = sig(acc(:, 1:2), 100, ex4_gyr (:,3));

% Specify initial state

85 mms.x0 = x0;

% Specify uncertainties measurements and initial state

mms.px0 = P0;

mms.pe = R;

90 mms.pv = Q;

% Run EKF

xhatc = ekf(mms , Yc);

95 % Plot results and compare to previous results

figure (3); clf

xplot(xhata , xhatb , xhatc , ’conf ’, 90,...

’legend ’, {’(a) Snapshot ’, ’(b) Dead reckoning ’, ’(c) EKF ’});

print(3, ’-depsc ’, fullfile(’fig ’, ’ex4c ’))

4

