
EXAMINATION IN TSRT14 SENSOR FUSION
ROOM: ISY’s computer rooms

TIME: 2022-10-20 at 8:00–12:00

COURSE: TSRT14 Sensor Fusion

PROVKOD: DAT1

DEPARTMENT: ISY

NUMBER OF EXERCISES: 4

RESPONSIBLE TEACHER: Gustaf Hendeby, tel. 013-28 58 15,
gustaf.hendeby@liu.se

VISITS: cirka 09:00, 10:00, 11:00

COURSE ADMINISTRATOR: Ninna Stensgård, 013-28 22 25,
ninna.stensgard@liu.se

APPROVED TOOLS: 1. F. Gustafsson: “Statistical Sensor Fusion”

PROVIDED MATERIAL:
1. Lecture slides; available from /courses/TSRT14/
2. Signal and Systems toolbox manual; available from /courses/TSRT14/
3. Current up to date errata for the textbook; available from /courses/TSRT14/

MATLAB FILES: The files that are needed for the exam are available at
/courses/TSRT14/.

SOLUTIONS: Available at the course homepage after the exam.

The exam can be inspected and checked out 2022-11-10 at 12.30–13.00 in Gustaf
Hendeby’s office, room 2A:503, B-house, entrance 27, A corridor to the right.

PRELIMINARY GRADE LIMITS: grade 3 15 points
grade 4 23 points
grade 5 30 points

NB! Solutions should include code and plots and clear cross references between
these. Mark all print-outs with your AID-number, date, course code, and exam
code.

Good luck!

gustaf.hendeby@liu.se
ninna.stensgard@liu.se


STARTING MATLAB (Linux)
Type matlab & in a terminal.

PRINTING (Linux):
Printouts of regular files can be sent to a specific printer using the command
lp -d printername file.pdf

in a terminal. (Exchange printername for the actual printer name.) When
selecting File/Print for a Simulink diagram, select the target printer by adding
-Pprintername

in the Device option box.

ADDING YOUR AID ETC TO PRINTOUTS:
Text can be added in Matlab plots with the commands title and gtext, and for
scope plots in Simulink by right clicking and then change the Axes properties.
In Simulink diagrams it is possible to double click any empty area and then
simply add text by typing it.

FURTHER GUIDELINES:

• Make sure to read all exercises and prioritize before getting started. The
level of difficulty is not necessarily increasing.

• Make sure to motivate every step of your solution carefully!

• Comment nontrivial steps in the code; including model choices and tuning.

• Put code for each exercise on a separate printout and keep all related
paper (hand written material, code, and plots) together when you hand
in your solution.
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1. The following questions all require relatively short answers, a few sentences
or short calculations should be enough. (Note, any incorrect statement will
result in 0 p on that question.)

(a) Consider a setup similar to the one in lab 2, where you were to estimate
the orientation of a smartphone based on measurements from the built
in IMU. In the lab, an accelerometer outlier step was introduced, to
detect and ignore measurements when the phone experienced external
accelerations (i.e., was moved).
Which assumption made in the lab makes this outlier rejection neces-
sary? Also provide a simple test to detect accelerations of the IMU. (2p)

(b) Assume y from either H0 or H1 according to:

y ∼

{
N (0, R), under H0

N (µ, R), under H1.

What is the uniformly most powerful test to decide between the two
hypothesis given a measurement of y? (2p)

(c) An extended Kalman filter has been designed to track cars traveling
through an intersection. The filter uses a constant velocity (CV) mo-
tion model, and the measurement model uses the noise specification
provided by the sensor manufacturer. Figure 1 shows the result of
tracking a car through the intersection.
You have been asked to have a look at the tuning and suggest changes
if you find it necessary. What do you respond? (2p)

(d) Consider two estimates xA ∼ N (x̂A, PA) and xB ∼ N (x̂B , PB), of
two estimates of the same underlying parameter x. The origins of the
estimates are known, and it can be guaranteed that the estimates are
independent. Given

x̂A =
(

0.8
2

)
PA =

(
0.2 0
0 0.33

)
x̂B =

(
2
3

)
PB =

(
0.33 0

0 0.5

)
,

calculate the best possible fused estimate, N (x̂, P ). (2p)
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Figure 1: Illustration of measurements and filter result for Exercise 1c.

(e) Which of the following statements are correct?
(i) For linear Gaussian measurements, weighted least squares (WLS)

is optimal, and reaches the Cramér-Rao lower bound (CRLB).
(ii) For linear measurements, the weighted least squares (WLS) and the

maximum likelihood (ML) estimates are identical, but are derived
using different principles.

(iii) The unscented Kalman filter (UKF) is always to be preferred to
the extended Kalman filter (EKF).

(iv) Simultaneous localization and mapping (SLAM) only provides the
relative position with respect to the start position not a global
position.

(v) A particle filter gives slightly different results each time it is run
on the same data due to its stochastic nature.

(2p)
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2. Consider the air traffic control problem of tracking an airplane (in two di-
mensions) using a radar. The radar is positioned in the origin, measuring
range, r, and bearing, ϕ, to the target with the independent standard de-
viations σr = 100 and σϕ = 0.1, respectively. The file data20221020.mat
contains a variable ex2_y sampled at 2 Hz with measurements of an airplane.

(a) Create a measurement model in MATLAB for the described radar! (2p)

(b) Plot the measurements (transformed to Cartesian coordinates) using,
e.g.,

plot(ex2_y(:, 1).*cos(ex2_y(:, 2)),...
ex2_y(:, 1).*sin(ex2_y(:, 2)), ’x’);

Based on this, select a suitable motion model to describe the target and
create it in MATLAB! (2p)

(c) Use an unscented Kalman filter to estimate the trajectory of the target!
Plot the estimate with 90% confidence intervals. Add the transformed
measurements and use them to verify that your solution is reasonable.
Hint: Use the first measurements to determine how to initialize the
filter. (3p)

(d) Use a particle filter to estimate the trajectory of the target! Plot the
estimate in a new plot with 90% confidence intervals together with the
transformed measurements. (3p)
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3. The Kalman filter (KF) provides an analytic solution to the Bayesian fil-
tering problem given a linear-Gaussian state-space model for the problem.
Here, consider a discrete valued hidden Markov model (HMM). That is a
model where the state xk assumes discrete values, si, i = 1, . . . , n. This
allows for the pdf of the state to be described by the values pi

k, i = 1, . . . , n,
which represents the probability that xk = si.
The dynamic model is described by the transition matrix Π, where the el-
ements Πij = Pr(xk = si|xk−1 = sj) describe the probability to transition
from state sj to si in a time step.
The measurements are described by p(yk|xk = si), i = 1, . . . , n, where the
likelihood can be computed for all relevant yk.

(a) Derive the time update step in a filter working on the HMM based on
the Bayesian time update equation

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1) dxk−1

assuming that the state transition matrix Π is known! Hence, derive all
pi

k|k−1 given all pj
k−1|k−1, the probabilities for the discrete state values

before and after the time update.
For 3 p you may assume n = 2, i.e., the number of discrete state values
is know to be two. (5p)

(b) Derive the measurement update step in a filter working on the HMM
based on the Bayesian measurement equation

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)
p(yk|y1:k−1)

assuming that the likelihood p(yk|xk = si) is known. Hence, derive
all pi

k|k given all pj
k|k−1, the probabilities for the discrete state values

before and after the measurement update.
For 3 p you may assume n = 2. (5p)

6



Figure 2: Experimental
setup with IMU mounted
close to the user’s foot.

Z
X

Y

gravity �

IM
U

Figure 3: Schematic prob-
lem formulation.

4. Capturing the motion of humans can be of interest in many situations, for
instance to create animations in movies. One way to accomplish this is to
place several inertial measurement units (IMUs) on a person’s body and use
the measurements to estimate his/her motion. In this exercise a simplified
version of the problem is considered, where the lower leg is tracked using one
IMU placed close to the foot and assuming the subject’s knee is not moving.
(See Figure 2.)
The problem is further simplified by assuming the IMU is only rotating
directly around its own z-axis, which is aligned with the horizontal plane, as
depicted in Figure 3. The task is to estimate the angle denoted x in the figure
using measurements from the IMU. The file data20221020.mat contains the
measurements at 100 Hz (acc contains the accelerometer measurements in
the x, y, and z direction, respectively, in the columns, and gyr contains the
gyroscope measurements in a similar way.)
(a) Suggest a measurement model to estimate x using the accelerometer!

Here it can be assumed the accelerometer only measures the gravity.
Use this to estimate the orientation and plot it!
Hint: (1) The repeated usage of estimate for each measurement can
be a bit slow, start with just a few measurements. (2) This is not a
standard exsensor model. (4p)

(b) Suggest a motion model that uses the gyroscope measurements as input!
Use this to estimate x assuming the IMU starts with the x-axis pointing
down. Plot the new estimate in the same figure as above! (3p)

(c) Combine the measurement model and the motion model, and apply
a filter to estimate x! Plot the result in the same figure as the two
previous estimates.
Hint: (1) Make sure to specify the frequency as the 4th argument
when creating the nl object to make the model time discrete. (2) To
create a sig object with both measurements and input, use the syntax
sig(y, fs, u). (3p)
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