
Last updated: 2023-05-31

Solutions for examination in
Sensor Fusion, 2022-08-17

1. (a) (iii), (iv), (v)

(b) (HTR−1H)−1

For a linear Gaussian estimation problem as this, the weighted least squares gives the minimum variance
unbiased estimate. The covariance matrix follows from this.

(c) R1–(b), R2–(c), R3–(a)

The “smaller” the R, the more the estimate is affected by the measurements.

(d) (iii), (v)

(e) Use an optimal proposal

The SNR is high, hence using an optimal is reasonable. Note, the structure of the problem does not
lend itself to use the marginalized particle filter.

2. %% Exercise 2

clear;

load data20220817

T = mean(diff(ex2_t)); % Sample time

5
%% Exercise 2a

sm = exsensor(’radar ’); % Make a radar measurement model

sm.th = [1000 1000] ’; % Place the sensor at the correct location

R = diag ([10, 0.1].^2); % Set the measurement noise as given in the exercise

10 sm.pe = R;

Y = sig(ex2_y ’, ex2_t); % Create sig object for the measuremnts

% Convert measurements to Cartesian coordinates

15 xcart = [ex2_y(1, :).*cos(ex2_y(2, :)); ex2_y(1, :).*sin(ex2_y(2, :))]+sm.th;

%Plot the result

figure (1); clf

plot(sm); hold on;

20 plot(xcart(1, :), xcart(2, :), ’x’);

axis ([0 3000, 500 2500])

% Given the plotted measurements , it seems the object moves mostly straight

% but makes a few turns. A constant velocity model should capture this

25 % fairly ok, given enough process noise.

mm = exmotion(’cv2d ’, T);

% Set the process noise , this is a tuning parameter

G = kron([T^2/2; T], eye(2));

q = 10.^2* eye(2);

30 mm.pv = G*q*G’;

%% Exercise 2b

% Use the first two measurements for initialization

35 x0 = xcart(:, 1); x1 = xcart(:, 2);

mm.x0 = [x0’, (x1 -x0) ’/T];

mm.px0 = diag ([100, 100, 100, 100].^2); % Use reasonable inital uncertainty

mms = addsensor(mm, sm); % Combined model

40 Xhat_ukf = ukf(mms , Y); % Run filter

% Plot result

figure (2); clf;

plot(sm); hold on;

plot(xcart(1, :), xcart(2, :), ’x’);

45 xplot2(Xhat_ukf , ’conf ’, 90);

axis ([0 3000, 500 2500])

%% Exercise 2c

50 Xhat_pf = pf(mms , Y, ’Np ’, 1000); % Run filter

figure (3); clf;

1

Last updated: 2023-05-31

plot(sm); hold on;

plot(xcart(1, :), xcart(2, :), ’x’);

55 xplot2(Xhat_pf , ’conf ’, 90);

axis ([0 3000, 500 2500])

print(1, ’-depsc ’, fullfile(’fig ’, ’ex2a ’))

print(2, ’-depsc ’, fullfile(’fig ’, ’ex2b ’))

60 print(3, ’-depsc ’, fullfile(’fig ’, ’ex2c ’))

0 500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

S1

(a)

0 500 1000 1500 2000 2500 3000

X

500

1000

1500

2000

2500

Y

S1

1
21 41

61

81

101121
141161

181

(b)

0 500 1000 1500 2000 2500 3000

X

500

1000

1500

2000

2500

Y

S1

1

21
41

61

81

101121
141161

181

(c)

Figure 1: Figures for Exercise 2.

3. (a) The likelihood for this problem is given by

p(y|x) = 1
2πe

− 1
2

(
(y1−cos(x))2+(y2−sin(x))2

)
The MLE is

x̂ = argmax
x

p(y|x) = argmin
x

−2 log
(
p(y|x)

)
= argmin

x

(
(y1 − cos(x))2 + (y2 − sin(x))2 − 2 log(2π)

)
,

using that log is strictly increasing, and where the last constant does not affect the result and can be
ignored.

To find an extreme point, differentiate and set to 0:

d
dx : 0 = 2

(
y1 − cos(x)

)
sin(x)− 2

(
y2 − sin(x)

)
cos(x) = 2

(
y1 sin(x)− y2 cos(x)

)
⇔

tan(x) = y2
y1

⇒ x̂ = arctan(y2y1).

The second derivative yields y1 cos(x) + y2 sin(x) which is greater 0, and hence the extreme point is a
minimum, if a quadrant compensated arctan is used.

(b) Gauss approximation formula for

h(x, e) = x̂ = arctan(y2/y1) = arctan

(
sin(x) + e2
cos(x) + e1

)
yields

var(x̂) = h′e(x, 0)R(h′e(x, 0))
T = σ2

((
− sin(x)/ cos2(x)

1 + (sin(x)/ cos(x))2

)2

+

(
1/ cos(x)

1 + (sin(x)/ cos(x))2

)2
)

= σ2 sin2(x) + cos2(x)

(sin2(x) + cos2(x))2
= σ2

(
cos2(x) + sin2(x)

)
= σ2.

(c) The MSE is given by

MSE =
1

N

N∑
i=1

(x− x̂)2

2

Last updated: 2023-05-31

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

200

400

600

800

1000

1200
mean = 0.00139887, std=0.335221, MSE=0.112362

Figure 2: Results of Exercise 3c

N = 10000;

x0 = 0;

sigma = sqrt (0.1);

y = [cos(x0); sin(x0)] + sigma*randn(2, N);

5 xhat = atan2(y(2, :), y(1, :));

meanxhat = mean(xhat);

stdxhat = std(xhat);

msexhat = mean((xhat - meanxhat).^2);

10 figure (1); clf;

hist(xhat , 40);

title(sprintf(’mean = %g, std=%g, MSE=%g’, meanxhat , stdxhat , msexhat));

Results are shown in Figure 2.

4. load(’data20220817 ’);

%% Ex 4a

% It is assumed the phone is horizontal all the time one , this can be

5 % used for calibration. The bias is the mean of measurements acquired

% during the calibration period (compensated with gravity g = 9.81).

%

% Assuming that the phone is moving only in the z-direction , the 1D dead

% reconing becomes a constant velocity model (using double integration).

10
% Indices for the two sequences:

cal_I = 200:330;

sub_I = 335:410;

15 % Calibrate the scenatio , by substracting mean acceleration compensated

% with for gravitaty , g:

g_acc = 9.81;

b = mean(ex4_y(:, cal_I), 2) - [0 0 g_acc]’;

g = [0; 0; g_acc];

20 % Data for the time when the phone is in the lifted:

acc = ex4_y(:, sub_I);

t = ex4_t(sub_I);

K = size(acc , 2); % Number of samples

25 xa = zeros(2, K+1); % pos , vel

acc_z = acc(3, :) - b(3) - g(3); % Bias compensated acc in z

% Perform dead reconing:

for k = 2:K

30 T = t(k) - t(k-1); % Sample time

xa(:, k+1) = [1 T; 0 1]*xa(:, k) + [T^2/2; T] *acc_z(k);

end

3

Last updated: 2023-05-31

figure (1); clc

35 subplot(2, 1, 1); plot(t, xa(1, 2:end));

ylabel(’Position [m]’);

subplot(2, 1, 2); plot(t, xa(2, 2:end));

xlabel(’Time [s]’); ylabel(’Velocity [m/s]’);

print(1, ’-depsc ’, fullfile(’fig ’, ’ex4a ’));

40 % The table is probably 84 cm high , judging from the level out of the

% hight estimate at 12.9 s. The estimate then once again takes off ,

% which ndicates we still have some uncompensated sensor bias. A reason

% could be that the phone is not completely plumb at table.

%

45 % We could also try to improve the estimate by using the fact that the

% phone should be stationary at beginning and end of the motion.

% However , this is not the approach taken here.

%% b)

50 % The same as in (a), with the acceleration the norm of the acceleration ,

% corrected for bias and gravity.

xb = zeros(2, K+1); % pos , vel

55 % Perform dead reconing:

for k = 2:K

% Compute acc_z for sample k

% Assume that acc_z is equal to the norm of the acceleration:

acc_z = norm(acc(:, k) - b) - g(3);

60 T = t(k) - t(k-1); % Sample time

xb(:, k+1) = [1 T; 0 1]*xb(:, k) + [T^2/2; T]* acc_z;

end

figure (2); clc

65 subplot(2, 1, 1); plot(t, xb(1, 2:end));

ylabel(’Position [m]’);

subplot(2, 1, 2); plot(t, xb(2, 2:end));

xlabel(’Time [s]’); ylabel(’Velocity [m/s]’);

print(2, ’-depsc ’, fullfile(’fig ’, ’ex4b ’));

70
% The table is probably 90 cm high , judging from the level out of the

% hight estimate at 13 s. This is slightly higher than in (a), possibly

% because |y^a_k |=|a_k+e^a_k|$ has a positive bias , which in combination

% with the effect discussed in (a) could explain the faster increase in

75 % height at the end compared to (a).

%% c)

11 11.5 12 12.5 13 13.5 14
0

0.2

0.4

0.6

0.8

1

P
o
s
it
io

n
 [

m
]

11 11.5 12 12.5 13 13.5 14

Time [s]

-0.5

0

0.5

1

1.5

V
e
lo

c
it
y
 [
m

/s
]

(a)

11 11.5 12 12.5 13 13.5 14
0

0.2

0.4

0.6

0.8

1

P
o
s
it
io

n
 [

m
]

11 11.5 12 12.5 13 13.5 14

Time [s]

-0.5

0

0.5

1

1.5

V
e
lo

c
it
y
 [
m

/s
]

(b)

Figure 3: Figures for Exercise 4(a) and 4(b).

4

