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Chapter 1

Introduction

The purpose of this lab is to give an introduction to multivariable sys-
tems and design of controllers for multivariable systems. The process
consists of two connect DC motors. We will start by familiarize us with
the system, design PID controllers, and finally use state-space theory to
design a controller using an observer and LQ-feedback. During the lab,
we use Matlab and Simulink for design, analysis and implementation.
The developed controllers are implemented on hardware using National
Instruments, allowing us to design the controller in Simulink and then
compiling these to dedicated hardware. The computer on which the con-
trollers are run are called xPC Target in the material.

1



Chapter 2

Introductory theory

This chapter gives a brief introduction to some theoretical aspects of the
lab. For a more thorough description, the reader is referred to the course
book.

2.1 Continuous systems - sampled systems

Since we use a computer to control the system, and thus use samples
from a continuous process, we will shortly describe how this is handled.

Consider the system in 2.1. We see the system with the sampled in- and
output signals u(ti) and y(ti). The block Regleralgoritm corresponds to
a controller implemented in the xPC Target computer.

Regler-
algoritm D/A G(s) A/D

u(ti) u(t) y(t)r(ti) y(ti)
System

Samplat system

Figure 2.1: A sampled system.

If the system is sampled sufficiently fast, the sampled signals are a good
approximation of the continuous signals, and the sampling will only
marginally reduce performance and robustness. With a good choice of
sampling time we can use an approximation (discretization) of a contin-
uous controller using, e.g., Euler or Tustins approximation, see Chapter
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11 in the basic control course book. In this lab, we will not investigate
issues from sampling, but simply assume that we are using a sampling
time which is short enough for us to use the sampled continuous-time
controller without any changes.

2.2 Controller structure

The controllers we use in the lab can be seen as two parts, one feedforward
term Fr(s) , and one feedback Fy(s). The input to the system is thus

u(t) = Fr(p)r(t)− Fy(p)y(t)

see Figure 2.2. In the PID-part of the lab, we will only use controllers
of the form F (s) = Fr(s) = Fy(s). In this case, the controller acts as
a compensator in front of G(s) with input r(t) − y(t). In the LQ-part,
Fy(s) och Fr(s) will be different.

Fr(s) Σ G(s)

Fy(s)

Σ

Σ

+
u(t)

+

+

+
+y(t)

−

r(t) z(t)

v(t)

w(t)

Figure 2.2: System and controller

2.3 Goal

The purpose of the controllers is to create a design which allows us to
control the output y1 och y2 and have them follow r1 and r2. This is
called the servo problem. We would like r1 to only affect y1 and not y2,
and r2 only affect y2. This is called decoupling. Decoupling of the closed-
loop system Gc(s) is achieved if the loop-gain G(s)Fy(s) is diagonal. For
static decoupling we only require G(0)Fy(0) to be diagonal.

The controller should of course be robust against modeling errors, and
insensitive to process noise and measurement errors.
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2.4 Theory

How should F (s) be selected? In the first part of the lab we use a diag-
onal controller where each diagonal element of F (s) is a PID-controller.
Using a diagonal F (s) (or permutation of a diagonal) means that we
are controlling the system as if it was composed of several independent
parallel systems without any coupling. Any actual coupling is seen as a
disturbance.

Following from there, we use controllers which use all degrees of freedom,
i.e., we let F (s) be a full matrix. This means that the controller will be
able to exploit the fact that G(s) is multivariable and coupled. To achieve
decoupling, we essentially try to design controllers F (s) which somehow
approximates G−1(s).

As a final experiment, we develop an LQ controller, and since we can-
not measure all the states, we need an observer. Given a state-space
description of the system

ẋ(t) = Ax(t) + Bu(t) + Nv1(t) (2.1)
y(t) = Cx(t) + Du(t) + v2(t) (2.2)
z(t) = Mx(t) (2.3)

where v1(t) and v2(t) are unit disturbances (white noise) with intensities
(covariance) R1 and R2. The cross-spectra between v1(t) and v2(t) is
assumed to be zero. We design a state-feedback

u(t) = −Lx(t). (2.4)

We typically want a linear combination of states (z = Mx) to quickly
approach zero after a disturbance. Additionally, we have penalties on
control inputs. In LQ-theory, we select the weight (penalty) matrices Q1

och Q2 in

J(Q1, Q2) =

∫ ∞
0

(
zT (t)Q1z(t) + uT (t)Q2u(t)

)
dt. (2.5)

The matrices Q1 and Q2 reflect the desired compromise between closed-
loop performance and control usage. The state-feedback L in (2.4) min-
imizing (2.5) is found in Matlab with

L = lqr( A, B, M’*Q1*M, Q2 ). (2.6)

Since we cannot measure all states (we only measure angles), we have to
estimate them using an observer

˙̂x(t) = Ax̂(t) + Bu(t) + K(y(t)− Cx̂(t)−Du(t)). (2.7)
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The control input is then calculated using the estimated states instead

u(t) = −Lx̂(t). (2.8)

A Kalman filter is an observer where the observer gain K is designed so
that the estimation error covariance is minimized. With this, an optimal
compromise between performance and sensitivity, with respect to the
noise model, is achieved. The Kalman filter is thus defined by the K
minimizing

P = E
[
x̃(t)x̃T (t)

]
, (2.9)

where
x̃(t) = x(t)− x̂(t) (2.10)

and x̂(t) is given by (2.7). The optimal gain K is obtained in Matlab
with

K = lqe( A, N, C, R1, R2 ). (2.11)

The strategy to combine the LQ-feedback and the Kalman filter state
estimate is called Linear Quadratic Gaussian (LQG).
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Chapter 3

Equipment

3.1 Computer and software

We use Windows computers with Matlab and Simulink. In Matlab
we use standard commands from Control System Toolbox to design and
analyze controllers.

Simulink is used for analysis, design and implementation of the con-
trollers. A number of Simulink-files are prepared for the lab

• pid xpc.mdl , Simulink-model for PID-control of the system through
xPC Target.

• lq xpc.mdl , Simulink-model for LQ-control of the system through
xPC Target.

• lq model.mdl , Simulink-model over the system controlled using
LQ. Used only for simulation.

The two models of the DC-motors described in Chapter 3.2 are available
in state-space form (As, Bs, Cs, Ds) in the files sys1.mat och sys2.mat .
A couple of Matlab-files are also available

• pid params.m, Matlab-script to define PID-parameters. Updates
the controller in pid xpc.mdl .
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• discretize observer.m, Matlab-script to create a discretized ob-
server used by lq xpc.mdl .

3.2 The system

The system we control in the lab consists of two DC-motors, connected
using a mysterious gray box. Through a switch on the gray box, the
dynamics can be changed. In the lab, we will work with the system
when the switch is in position 1 (position 2 only if you have time).

The measured outputs of the system are the angles of the two DC-motors
while inputs are voltages sent to the gray box. Figure 3.1 on page 9
illustrates the complete setup.

The system G(s) can be described approximately as

G(s) =

(
48

s(0.25s+1)
96

s(0.25s+1)

96
s(0.25s+1)

48
s(0.25s+1)

)
(3.1)

when the switch is in position 1. Notice the coupled, but simple sym-
metric dynamics.

In position 2, it is given by

G(s) =

(
48

s(0.25s+1)
96s+96

s(0.25s+1)2

96s+96
s(0.25s+1)2

48
s(0.25s+1)

)
(3.2)

State-space models

A minimal state-space representation of G(s) is

(position 1)

A =


0 1 0 0
0 −4 0 0
0 0 0 1
0 0 0 −4

 B =


0 0

192 384
0 0

384 192


C =

(
1 0 0 0
0 0 1 0

)
D =

(
0 0
0 0

)
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(position 2)

A =


0 1 0 0 0 0
0 −4 1 0 0 0
0 0 −4 0 0 0
0 0 0 0 1 0
0 0 0 0 −4 1
0 0 0 0 0 −4

 B =


0 0

192 −1536
0 −4608
0 0

1536 192
−4608 0


C =

(
1 0 0 0 0 0
0 0 0 1 0 0

)
D =

(
0 0
0 0

)

Offset-adjustment of motors
Both DC-motors have a potentiometer to adjust the voltage offset. Before
you start experimenting, adjust these so the motors stand still when the
equipment is turned on but the input to the system is zero.

Control limitations
The linear models above are of course only approximations. In particular,
they are not good when the inputs to the system is larger than 5V . A
controller designed to give a fast system naturally leads to large inputs.
This fact gives us a physical limitation on the performance of the system,
if we only want to control the system in regions where our models are
good. If we go outside this region, we can no longer guarantee stability
and performance, even though theory might guarantee this.
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National Instruments
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Figure 3.1: The two DC motors, the gray box and xPC Target via
National Instruments. Note that Out1 and Out2 are flipped
in order on connector 0. You should not have to touch any
cable or care about this.
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Chapter 4

Lab task

Getting started

• Make sure the system is setup according to Figure 3.1.

• Turn on power on all units (large red button on brown box, two
small green buttons on each DC motor board). Note that some old
bad controller might be downloaded to the DSP, so you might want
to turn off the motors again until you have downloaded your own
code (it will be very obvious if you want to turn off the motors...).

• Open K:\TSRT09\labs and copy the directory \multivar_1_2 to,
e.g., your student account. The copied directory might be write
protected. Right-click the copied directory, Properties/Egenskaper,
and make sure it is not marked as read-only

• Start Matlab R2016b. (IMPORTANT! Use this specific version!)

• Go to the directory with the copied files

• Open the file xpcsetup.m in Matlab and follow the steps in the
file to initialize the communication between the desktop computer
and the xPC Target computer. Note in particular what has to be
done if several targets are listed.

• Make sure the switch on the gray box is in position 1

• Load the model, load sys1.

• Write whos in Matlab to see the data you just loaded.
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PID

Open the Simulink file pid xpc.mdl . Define PID-parameters by editing
and running pid_params. Only use P or PD-control for now, i.e., let
TI =∞. We will come back to integral action later.

Compile the controller to the xPC Target computer with the command
slbuild( ’pid_xpc’ ). The compilation might crash the first time you
run it, but if you run it again it should work.

Activate the controller with tg.load( ’pid_xpc’ ). The controller can
be started and stopped with tg.start and tg.stop.

When you change PID-parameters through pid_params, the values in
the compiled controller will be updated, as long as you do not change
the structure of the controller (i.e. turning on/off integral and derivative
action) which requires a new compilation and activation. Similarly, any
structural change in the Simulink model defining the controller requires
recompilation and activation.

The Simulink file pid xpc.mdl is initially setup for open-loop control.
Study the model and make sure you understand why it implements open-
loop control.

Open-loop control
To get a feeling for the system, we start with open-loop control (adjusted
by the switches in the Simulink model), i.e., no measurement feedback
and simply use u = Frr.

Can you make both motors stand still, or easily control the angle of the
two motors independently?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Control with diagonal controller
Close the first loop using a PID-controller. The PID controller with
parameters defined in pid_params is K(1 + 1

TIs
+ Td

s
s/w+1

). We disre-
gard the second loop for the moment and let it be uncontrolled (send
zero as input in the Simulink model). Compile and activate the model
again (remember, after every structural change in the model, you have
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to recompile).

The measurement discs sometimes get dislocated on the DC-motors,
which means that the angle you read is different from the angle (or more
precisely voltage) the computer actually measures. To see the measure-
ments and control inputs in real-time, press input on the monitor, and
you will see these signals on the DSP monitor.

Can you stabilize and achieve good reference tracking on the first loop?
Which controller parameters are you using?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Close the second loop instead of the first and repeat the experiment,
using the same PID-parameters, and confirm that it works equally well
on that channel.

Now close both loops using your controllers. What happens?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us analyze this theoretically and compute the closed-loop poles. In
pid params.m you see that two transfer function F1 and F2 are defined.
Use these to define your multivariable controller F. State-space models
(As,Bs,Cs,Ds) for the system G(s) were loaded earlier. Use these to
create a model G with the command ss. The closed-loop system can
now be obtained with the Matlab command feedback. The command
feedback(N,M) generates (I + N(s)M(s))−1N(s). The closed-loop sys-
tem is thus created with

Gc = feedback(G*F,eye(2));

How many states/poles should the closed-loop system have? (How many
states does the open-loop system have. How many states do you need
to implement your two PID controllers? Note that the number of states
in the controller depends on which components you actually use in the
controller)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In some cases, numerical issues might lead to non-minimal realizations
and thus to too many states. This can be solved with the command

Gc = minreal( Gc );

Always use this command when creating various transfer functions. The
closed-loop poles, i.e., the eigenvalues of Gc.a in a minimal realization,
can be computed with pole(Gc). The number of poles should coincide
with the number you gave above. What can you say about your poles?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Investigate which inputs and outputs that are most coupled, using RGA-
analysis (see chapter 8 in the course book). When doing this, it is most
easily done by simply looking at the model given in Section 3.2, and work
with that. Note: since G(s0 has a pole in 0, you cannot evaluate G at
ω = 0, but you can use instead ω which is very small.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A basic technique for multivariable control is to pairwise control the most
coupled input-output pairs. How can you change the connection between
the controller and the system to achieve this? Do these changes in the
controller definition pid xpc.mdl (not physically! ) and make correspond-
ing changes in your variable F.

Test your new controller.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Is the closed-loop model stable? Check the poles.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Can we achieve decoupling with this type of controller? Hint: preparation
question 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now study the singular values of the loop gain G(s)F (s) and of the
closed-loop system Gc(s) = (I + G(s)F (s))−1G(s)F (s) using the com-
mand sigma.

Which typical properties can you see in the loop-gain (low-frequency
gain, break-points, signs of multivariable and/or cross-coupling)? Can
you connect the low-frequency gain and break-points with poles and zeros
in the open-loop system and the controller?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With a small number of inputs and outputs, we can also look at single
channel gains. Use bodemag to study amplitude gains on the closed-loop
system. How can you see cross-coupling here?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will now study how sensitive the system is for input disturbances. We
can test this in practice by turning the zero-offset. By adjusting this, an
additive, for the controller unknown, voltage is added to the control input
that is delivered to the DC-motors. By definition, an input disturbance!

Start by turning off the controller, and adjust the zero-offset on both
motors to make sure they stand still.

Now turn on the controller, and switch monitor so you can see your
signals. Change the zero-offset significantly (introduce disturbance!) so
you see large movements. Do the motors stop? (i.e., does the total
voltage applied the motors go back to 0 statically)? Does the control
error approach 0?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To analyze how the system reacts to input disturbances (which we call
wu) we can study the input sensitivity function Su(s) = (I+F (s)G(s))−1

(transfer function from a disturbance added to the input computed by
the controller, to the input actually inserted in the system), and the
transfer function from an input disturbance to the controlled output y.
This transfer function is Gwuy = G(I+F (s)G(s))−1 which can be written
as (I + G(s)F (s))−1G(s). These transfer function can be defined using
feedback. Do not forget to use minreal.

Draw a block diagram with F , G, r, wu and y and clearly indicate which
transfer functions we are computing here.

Start by studying the singular values of the input sensitivity function
(I + F (s)G(s))−1. What will the static influence on the applied input
be when we have a constant input disturbance? Is it consistent with
experimental results?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now study the singular values of the transfer function from input distur-
bance to the controlled variable y, and in particular the static influence.
Is it consistent with experimental results?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The input applied to the system is Wu(s) + F (s)(R(s)− Y (s)). For the
system to stand still this signal has to be 0 stationary when wu(t) is
a constant. Can the control error r(t) − y(t) be 0 stationary, with a
constant input disturbance acting, if F (s) is a PD controller?

15



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now change your controller to incorporate integral action, and perform
the same experiment again. Also redraw the singular values. What
happens now?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adjust zero-offset back to zero again before you proceed (stop the con-
trollers and adjust until nothing moves).

More advanced controllers
Let us now study the system we control and see if we can find a more
complex control structure to achive decoupling. Modify the controller in
the Simulink file according to your solution of preparatory exercise 4.
(Practically this means H in the preparatory exercise is the gray box,
and Ḡ(s) are the two DC motors.) Write simulink in Matlab to make
all Simulink blocks available. The Simulink blocks Mux, Demux and
Gain might be useful to implement the controller in this task. Try your
new controller. Note that a too fast closed-loop systems might lead to
instability due to model errors.

Check the closed-loop poles.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now study the open-loop gain and the closed-loop gain using sigma and
bodemag, and compare with the previous control. Can you see any signs
of model errors when you compare the experimental behavior with the
theoretical gains? Also study the input sensitivity function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extra task (when you have finished the lab if you have time)
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Repeat the control design for the system with the gray box switch in
position 2. The model is available in the file sys2.mat .

LQ

We will now design LQG controllers. This gives us a simple approach
to design multivariable controllers, without any special tricks to deal
with coupling. We start with simulations to design the LQG-controller
through tuning of the weights Q1 and Q2 in (2.5) until we obtain step
responses with desired performance and reasonable control use. Our ini-
tial goal is to design a closed-loop system with bandwidth approximately
ωb = 2 rad/s, while not using control inputs beyond the limit of 5 volts.
When we have obtained a satisfactory controller we use it on the real sys-
tem. Since we cannot measure all states (and those that we do measure
might have measurement errors), an observer has to be used in practice.

Our system is written in the form

ẋ = Asx + Bsu + Nsv1

y = Csx + v2
(4.1)

where v1 and v2 are white Gaussian noise with mean 0 and covariances
R1 och R2. Unfortunately we do not know the actual values of R1 och
R2 so these are also tuning variables.

Since we cannot measure all states we need an observer to estimate them
before performing the LQ-feedback. The structure for an observer is
setup in the Simulink models, but first we have to compute the observer
gain K. In Matlab we do this with

K = lqe( As, Ns, Cs, R1, R2 )

Since we do not know R1 and R2, we have to make an educated guess
based upon what we know on their relative size, i.e, the relative amount
of process vs measurement noise. In this application, a reasonable guess
is that the measurement error is more problematic than the process error,
hence:

R1 = 0.1 * eye( 2 )
R2 = eye( 2 )

Now we have to compute the state-feedback. In Matlab:

L = lqr( As, Bs, Q1, Q2 )

17



where Q1 is the weights on the states and Q2 is the control input weight.
By symmetry, it is reasonable to have the same penalty on both inputs,

Q2 =

(
1 0
0 1

)
and simply vary Q1 as a design parameter (as it is the relative size of Q1

and Q2 which matters)

To achieve an identity static gain on the closed-loop system from refer-
ence r to controlled variables z = Mx (which happens to be the same
as the measurements in our setup), we have to feedforward the reference
suitably. With u = L0r − Lx, the closed-loop system is given by

ẋ = (A−BL)x + BL0r

z = Mx

The transfer function of the closed-loop is thus M(sI−(A−BL))−1BL0,
and with the static gain requirement Gc(0) = I the choice of L0 can be
derived. When we replace the states x with their estimates x̂ from the
observer, the arguments above will not change, as the transfer function
from r to y does not depend on the observer.

Start by creating a state-feedback in which the angular velocities are not
weighted. Weight both angles identically, and do not use any weight
outside the diagonal, i.e., use Q1 on the form

Q1 = diag( [ qVinkel 0 qVinkel 0 ] )

Use lq model.mdl to simulate the system, and singular values of the
closed-loop systems, for various Q1, until it looks promising and sat-
isfies the requirements. Use lq xpc.mdl to test the controller in prac-
tice. Do not forget to run the file discretize observer.m to discretize the
continuous-time observer. Are the results satisfactory?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Look at the closed-loop poles, i.e, eigenvalues of As−Bs L. Describe how
they differ from the poles you obtained with the PID-based controllers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Try to weight the angular velocities also. What happens with the cou-
pling when you start penalizing the velocities? (this is not a generic
feature of LQ but a phenomena on this system)

18



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extra task

Repeat the control design for the system with the gray box switch in
position 2. The model is available in the file sys2.mat .
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Chapter 5

Preparation

Before the lab, there will be a small test. Related material is this pm,
theory in the book, and the questions below. note that the test is done
individually, without computer or book. To pass, you have to have 3
answers right out of 5.

For the LQ-part of the lab to be done in time, chapter 8.5 and 9 in the
course book, and the theory part of this pm, must have been read.

1. Let Y (s) = G(s)U(s) where,

G(s) =

(
1

s+1
5

s+2
1

s+1
5

s+1

)
compute poles and zeros of the system G(s). Which singular values
do you have at 3 rad/s? (Use Matlab or a calculator when the
expressions gets messy in the singular value computations)

2. Consider the system on figure 2.2 where Fy(s) = Fr(s) = F (s).
Show that decoupling in the closed-loop system Gc(s) is achieved
if the open-loop system G(s)F (s) is diagonal. (A diagonal matrix
has non-zero elements only on the diagonal).

3. Let Y (s) = G(s)U(s) where,

G(s) =

(
1

s+1
2s

2s+1
2s

2s+1
1

s+1

)
Compute RGA for G(0) and G(∞). can you make a qualified guess,
based on your RGA analysis, if it is hard or easy to control this
system using two single-variable PID controllers.

20



4. Start by showing that G(s) (i.e., (3.1)) can be factorized in the
following form:

G(s) = Ḡ(s)H =

(
Ḡ1(s) 0

0 Ḡ2(s)

)
H

where H is a matrix independent of s. How can we design a
controller F (s) such that G(s)F (s) is diagonal, i.e, decoupling is
achieved? Let the controller F (s) contain the PID-controller

F diag(s) =

(
F1(s) 0

0 F2(s)

)
.

For instance, F (s) = W1F
diag(s)W2, where W1 and W2 are the two

matrices you have to compute.

5. Determine boundaries on the bandwidth when the closed-loop sin-
gular values are as below
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6. A control system with feedback from estimated states has been
designed and looks promising in simulations. When the solution is
tested in practice, the control input unfortunately looks as below.
It is assumed that the problem is due to the observer. In which
direction would the noise variances matrices R1 och R2 be adjusted
to obtained a smoother input signal?
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7. A system is controlled with state-feedback, computed in Matlab
using

L = lqr( A, B, [ 2 4 ; 4 9 ], [ 1 0.9 ; 0.9 1 ] )

A step response is shown in the figure below. It does not look good,
but is optimal in some sense. Which sense?
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8. (Continued from previous question) With the simple choice

L = [ 1 0 ; 0 1 ]

the step response is shown in the figure below, which perhaps looks
better than the result achieved using LQ in the previous question.
What are the pro- and cons in choosing L directly, vs using LQ to
design it?
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