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This document includes some basic mathematical concepts that will be used during the course
TSRT09. The notation is inherited from the course book "Reglerteori" by Glad & Ljung. For a
more thorough description, the reader is referred to standard linear algebra literature and the course
material.

Scalar products
The standard inner product (or dot product or scalar product) between two vectors x ∈ R

n and y ∈ R
n

is defined as

x · y = xT y =
[
x1 x2 . . . xn

]
⎡
⎢⎢⎢⎣
y1
y2
...
yn

⎤
⎥⎥⎥⎦ =

n∑
i=1

xiyi. (1)

Two vectors are perpendicular to each other if and only if their inner product is zero, i.e.,

x ⊥ y ⇐⇒ xT y = 0, (2)

where x ⊥ y means that x and y are orthogonal.

Matrix-vector products
A matrix-vector product between a matrix A ∈ R

m×n and a vector x ∈ R
n results in a new vector

z ∈ R
m, where the i-th element (row) in z is obtained as the inner product between row i in A and

the vector x. For m = 2 and n = 3 the following result is obtained

[
z1
z2

]
=

[
a11 a12 a13
a21 a22 a23

]⎡⎣x1

x2

x3

⎤
⎦ =

[
a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

]
. (3)

Norms and Cauchy-Schwartz inequality
A norm on a finite dimensional vector space (e.g. Rn) is denoted |x|, where |·| is any function satisfying
the following properties for all x in the vector space:

1. |x| ≥ 0

2. |x| = 0 ⇐⇒ x = 0

3. |αx| = |α| |x|
4. |x+ y| ≤ |x|+ |y| (the so called triangle inequality)

For the vector space R
n, commonly used norms are the 2-norm (|x|2), the 1-norm (|x|1) and the

∞-norm (|x|∞).
For an inner product space such as R

n, the inner product and the norm are related by

|x|2 =
√
xTx,

where xTx is the inner product of x with itself. Furthermore, for all x, y ∈ R
n the so called Cauchy-

Schwartz inequality holds
|xT y| ≤ |x| |y|. (4)
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A norm on a infinite dimensional functional space (e.g. H2) is denoted ||x||. It is defined in the
same way as |x|, and satisfies the same properties as |x|, and the double bars are just for notational
convenience.

Determinants
The determinant, denoted det(A), is a scalar value associated with a square matrix A ∈ R

n×n. For a
2× 2 matrix, the determinant is computed as

det(A) =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21, (5)

and for a 3× 3 matrix it can be computed as e.g.

det(A) =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

(6)

If det(A) = 0 the matrix A is singular or non-invertible.

Eigenvalues and eigenvectors
Consider a square matrix A. Then λ is called an eigenvalue and v 
= 0 an eigenvector to A if they
satisfy

Av = λv (7)

holds. Hence, the result of the matrix-vector product Av is a scaled version of v, and the scaling is
called the eigenvalue. The eigenvalues can be calculated using the characteristic equation (or secular
equation)

det(A− λI) = 0 (8)

The corresponding eigenvectors can be found by inserting the calculated eigenvalues one by one in (7),
i.e.,

(A− Iλi)vi = 0 (9)

where λi is eigenvalue i that has been computed from the characteristic equation above and vi is the
corresponding (non-zero) eigenvector.

Two sometimes useful identities involving eigenvalues are

trace(A) =
n∑

i=1

λi (10)

det(A) =

n∏
i=1

λi (11)

As a result, a singular matrix must have at least one zero eigenvalue.

Null space
The nullspace (or kernel), denoted N (A), of a matrix A ∈ R

m×n consists of all vectors x ∈ R
n such

that Ax = 0, i.e,
N (A) = {x |Ax = 0, x ∈ R

n}. (12)

Hence, the nullspace consists of all vectors x ∈ R
n that are perpendicular to each row of A. This is

clear by looking at

Ax =

⎡
⎢⎣
aT1
...

aTm

⎤
⎥⎦x =

⎡
⎢⎣
aT1 x

...
aTmx

⎤
⎥⎦ =

⎡
⎢⎣
0
...
0

⎤
⎥⎦ ⇐⇒ aTi x = 0, i = 1, . . . ,m, (13)

where aTi , i = 1, . . . ,m are the rows of A, and aTi x = 0 means that ai ⊥ x.
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Range space
The range space (or column space), denoted R(A), of a matrix A ∈ R

m×n consists of all mappings of
A, i.e.,

R(A) = {y ∈ R
m | y = Ax, ∀x ∈ R

n}. (14)

Hence the range space of A consists of all vectors that are linear combinations of the columns of A.
This is clear by looking at

y = Ax =
[
ā1 . . . ān

]
⎡
⎢⎣
x1

...
xn

⎤
⎥⎦ =

n∑
i=1

xiāi, (15)

where āi, i = 1, . . . , n are the columns of A. Suppose that there are r linearly independent columns
in A, then these are a basis for the range space and the dimension of the range space of A is nR.

Rank
The number of linearly independent columns of a matrix A is called the column rank, whereas the
number of linearly independent rows are called the row rank. The column rank is equal to the row
rank, and this value is referred to as the rank of the matrix A.

The column rank (and hence the rank) of A is the same as the dimension of the range space of A,
i.e.,

rank(A) = dim(R(A)) = r, (16)

where r is the number of linearly independent columns or rows in the matrix A. A square matrix (i.e.
A ∈ R

n×n) is invertible (or non-singular) if and only if the matrix has full rank (i.e. rank(A) = n).

Positive (semi) definite matrices and quadratic forms
Let S

n denote a real symmetric matrix with n rows (and columns). For a symmetric matrix it holds
that the quadratic form (xTAx) can be bounded from below and from above as

λmin(A)xTx ≤ xTAx ≤ λmax(A)xTx (17)

where λmin(A) denotes the smallest eigenvalue of A and λmax(A) denotes the largest one. A symmetric
matrix A ∈ S

n is called positive definite if for all x 
= 0 it holds that xTAx > 0. This is denoted as
A � 0 and this is true if and only if all eigenvalues of A are strictly positive. The set of positive definite
matrices is commonly denoted as S

n
++.

Furthermore, a matrix A ∈ S
n for which is holds that xTAx ≥ 0 for all x 
= 0 is called positive

semidefinite. This is denoted as A 
 0 and this is true if and only if all eigenvalues of A are non-negative
(positive or zero). The set of positive semidefinite matrices is commonly denoted as S

n
+.

Singular value decomposition
For every matrix A ∈ R

m×n with rank(A) = r ≤ min(m,n), A can be factored as

A =
[
Ū Ũ

]
︸ ︷︷ ︸

U

[
Σ 0
0 0

] [
V̄ Ṽ

]T
︸ ︷︷ ︸

V T

, (18)

where Σ = diag(σ1, . . . , σr) with

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

and Ū ∈ R
m×r, Ũ ∈ R

m×m−r, V̄ ∈ R
n×r, Ṽ ∈ R

n×n−r with UTU = Im and V TV = In. The matrices
Im and In denote m×m and n× n identity matrices, respectively. The factorization in (18) is called
the singular value decomposition of A and the numbers σi are the singular values. Note that columns
of Ū are a basis for the range space of A and columns of Ṽ are a basis of null space of A. Here we
assumed that A is real-valued, however, the same definitions hold even if A is complex. In this case,
matrices U and V can be complex-valued and wherever we use matrix transpose, i.e., T , it should be
replaced by matrix conjugate-transpose, i.e., ∗. However, the singular values σi are always real valued.
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Matrix inverse
A matrix A ∈ R

n×n is invertible or non-singular if there exists a matrix A−1 ∈ R
n×n such that

A−1A = AA−1 = I. (19)

For a 2× 2 matrix A the inverse is computed as
[
a11 a12
a21 a22

]−1

=
1

det(A)

[
a22 −a12
−a21 a11

]
=

1

a11a22 − a12a21

[
a22 −a12
−a21 a11

]
(20)

A singular matrix B ∈ R
n×n is a matrix that is not invertible. A singular matrix B always have

det(B) = 0, and at least one eigenvalue is zero and hence there exist a null space to B.
For singular matrices and non-square matrices, the (Moore-Penrose) pseudo inverse, denoted by †,

is a generalization of the matrix inverse. The pseudo inverse A† of the matrix A ∈ R
m×n is unique

and satisfies the four properties

AA†A = A (21)

A†AA† = A† (22)

(AA†)∗ = AA† (23)

(A†A)∗ = A†A. (24)

If A is invertible, then A† = A−1.
The pseudo inverse can be computed in different ways, e.g. using singular value decompositions.

In Matlab it can be computed using the command pinv.

Jacobians and chain rule
Consider an m-dimensional vector-valued function f : R

n → R
m. The Jacobian matrix for this

function is defined as

Jf (x) =

⎡
⎢⎢⎢⎢⎣

∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂fn(x)
∂xn

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

. . . ∂fn(x)
∂xn

⎤
⎥⎥⎥⎥⎦ , (25)

which can be used to define the first order approximation of the function around x that is given as

f(z) ≈ f(x) + Jf (x)(z − x) (26)

for every point z that is close enough to x. Now consider a vector-valued function h : R
n → R

p that
is defined as h(x) = g(f(x)) where g : R

m → R
p is another vector-valued function. The Jacobian

matrix for this function can be computed using the chain rule which states that

Jh(x) = Jg(f(x))Jf (x). (27)

Note: It is not allowed to bring this
document to an exam in TSRT09!
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