Math primer for Control theory TSRT09

Daniel Axehill, Isak Nielsen, and Sina Khoshfetrat Pakazad

January 23, 2014

This document includes some basic mathematical concepts that will be used during the course TSRT09. The notation is inherited from the course book "Reglerteori" by Glad \& Ljung. For a more thorough description, the reader is referred to standard linear algebra literature and the course material.

Scalar products

The standard inner product (or dot product or scalar product) between two vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ is defined as

$$
x \cdot y=x^{T} y=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \tag{1}\\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i} .
$$

Two vectors are perpendicular to each other if and only if their inner product is zero, i.e.,

$$
\begin{equation*}
x \perp y \Longleftrightarrow x^{T} y=0, \tag{2}
\end{equation*}
$$

where $x \perp y$ means that x and y are orthogonal.

Matrix-vector products

A matrix-vector product between a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^{n}$ results in a new vector $z \in \mathbb{R}^{m}$, where the i-th element (row) in z is obtained as the inner product between row i in A and the vector x. For $m=2$ and $n=3$ the following result is obtained

$$
\left[\begin{array}{l}
z_{1} \tag{3}\\
z_{2}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}
\end{array}\right] .
$$

Norms and Cauchy-Schwartz inequality

A norm on a finite dimensional vector space (e.g. \mathbb{R}^{n}) is denoted $|x|$, where $|\cdot|$ is any function satisfying the following properties for all x in the vector space:

1. $|x| \geq 0$
2. $|x|=0 \Longleftrightarrow x=0$
3. $|\alpha x|=|\alpha||x|$
4. $|x+y| \leq|x|+|y|$ (the so called triangle inequality)

For the vector space \mathbb{R}^{n}, commonly used norms are the 2 -norm $\left(|x|_{2}\right)$, the 1 -norm $\left(|x|_{1}\right)$ and the ∞-norm $\left(|x|_{\infty}\right)$.

For an inner product space such as \mathbb{R}^{n}, the inner product and the norm are related by

$$
|x|_{2}=\sqrt{x^{T} x}
$$

where $x^{T} x$ is the inner product of x with itself. Furthermore, for all $x, y \in \mathbb{R}^{n}$ the so called CauchySchwartz inequality holds

$$
\left|x^{T} y\right| \leq|x||y| .
$$

A norm on a infinite dimensional functional space (e.g. \mathcal{H}_{2}) is denoted $\|x\|$. It is defined in the same way as $|x|$, and satisfies the same properties as $|x|$, and the double bars are just for notational convenience.

Determinants

The determinant, denoted $\operatorname{det}(A)$, is a scalar value associated with a square matrix $A \in \mathbb{R}^{n \times n}$. For a 2×2 matrix, the determinant is computed as

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \tag{5}\\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21},
$$

and for a 3×3 matrix it can be computed as e.g.

$$
\begin{align*}
& \operatorname{det}(A)=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \tag{6}\\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}
\end{align*}
$$

If $\operatorname{det}(A)=0$ the matrix A is singular or non-invertible.

Eigenvalues and eigenvectors

Consider a square matrix A. Then λ is called an eigenvalue and $v \neq 0$ an eigenvector to A if they satisfy

$$
\begin{equation*}
A v=\lambda v \tag{7}
\end{equation*}
$$

holds. Hence, the result of the matrix-vector product $A v$ is a scaled version of v, and the scaling is called the eigenvalue. The eigenvalues can be calculated using the characteristic equation (or secular equation)

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{8}
\end{equation*}
$$

The corresponding eigenvectors can be found by inserting the calculated eigenvalues one by one in (7), i.e.,

$$
\begin{equation*}
\left(A-I \lambda_{i}\right) v_{i}=0 \tag{9}
\end{equation*}
$$

where λ_{i} is eigenvalue i that has been computed from the characteristic equation above and v_{i} is the corresponding (non-zero) eigenvector.

Two sometimes useful identities involving eigenvalues are

$$
\begin{align*}
\operatorname{trace}(A) & =\sum_{i=1}^{n} \lambda_{i} \tag{10}\\
\operatorname{det}(A) & =\prod_{i=1}^{n} \lambda_{i} \tag{11}
\end{align*}
$$

As a result, a singular matrix must have at least one zero eigenvalue

Null space

The nullspace (or kernel), denoted $\mathcal{N}(A)$, of a matrix $A \in \mathbb{R}^{m \times n}$ consists of all vectors $x \in \mathbb{R}^{n}$ such that $A x=0$, i.e, $\quad \mathcal{N}(A)=\left\{x \mid A x=0, x \in \mathbb{R}^{n}\right\}$.
Hence, the nullspace consists of all vectors $x \in \mathbb{R}^{n}$ that are perpendicular to each row of A. This is clear by looking at

$$
A x=\left[\begin{array}{c}
a_{1}^{T} \tag{13}\\
\vdots \\
a_{m}^{T}
\end{array}\right] x=\left[\begin{array}{c}
a_{1}^{T} x \\
\vdots \\
a_{m}^{T} x
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] \Longleftrightarrow a_{i}^{T} x=0, i=1, \ldots, m,
$$

where $a_{i}^{T}, i=1, \ldots, m$ are the rows of A, and $a_{i}^{T} x=0$ means that $a_{i} \perp x$.

Range space

The range space (or column space), denoted $\mathcal{R}(A)$, of a matrix $A \in \mathbb{R}^{m \times n}$ consists of all mappings of A, i.e.,

$$
\begin{equation*}
\mathcal{R}(A)=\left\{y \in \mathbb{R}^{m} \mid y=A x, \forall x \in \mathbb{R}^{n}\right\} . \tag{14}
\end{equation*}
$$

Sence the range space of A consists of all vectors that are linear combinations of the columns of A. This is clear by looking at

$$
y=A x=\left[\begin{array}{lll}
\bar{a}_{1} & \ldots & \bar{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \tag{15}\\
\vdots \\
x_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} \bar{a}_{i},
$$

where $\bar{a}_{i}, i=1, \ldots, n$ are the columns of A. Suppose that there are r linearly independent columns in A, then these are a basis for the range space and the dimension of the range space of A is $n_{\mathcal{R}}$

Rank

The number of linearly independent columns of a matrix A is called the column rank, whereas the number of linearly independent rows are called the row rank. The column rank is equal to the row ramber of linearly independent rows are called the row rank,
The column rank (and hence the rank) of A is the same as the dimension of the range space of A i.e.,

$$
\begin{equation*}
\operatorname{rank}(A)=\operatorname{dim}(\mathcal{R}(A))=r, \tag{16}
\end{equation*}
$$

where r is the number of linearly independent columns or rows in the matrix A. A square matrix (i.e. $A \in \mathbb{R}^{n \times n}$) is invertible (or non-singular) if and only if the matrix has full rank (i.e. $\left.\operatorname{rank}(A)=n\right)$.

Positive (semi) definite matrices and quadratic forms
Let \mathbb{S}^{n} denote a real symmetric matrix with n rows (and columns). For a symmetric matrix it holds that the quadratic form $\left(x^{T} A x\right)$ can be bounded from below and from above as

$$
\begin{equation*}
\lambda_{\min }(A) x^{T} x \leq x^{T} A x \leq \lambda_{\max }(A) x^{T} x \tag{11}
\end{equation*}
$$

where $\lambda_{\min }(A)$ denotes the smallest eigenvalue of A and $\lambda_{\max }(A)$ denotes the largest one. A symmetric matrix $A \in \mathbb{S}^{n}$ is called positive definite if for all $x \neq 0$ it holds that $x^{T} A x>0$. This is denoted as $A \succ 0$ and this is true if and only if all eigenvalues of A are strictly positive. The set of positive definite matrices is commonly denoted as \mathbb{S}_{++}^{n}
Furthermore, a matrix $A \in \mathbb{S}^{n}$ for which is holds that $x^{T} A x \geq 0$ for all $x \neq 0$ is called positive semidefinite. This is denoted as $A \succeq 0$ and this is true if and only if all eigenvalues of A are non-negative (positive or zero). The set of positive semidefinite matrices is commonly denoted as \mathbb{S}_{+}^{n}

Singular value decomposition

For every matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=r \leq \min (m, n), A$ can be factored as

$$
A=\underbrace{\left[\begin{array}{ll}
\bar{U} & \tilde{U}
\end{array}\right]}_{U}\left[\begin{array}{ll}
\Sigma & 0 \tag{18}\\
0 & 0
\end{array}\right] \underbrace{\left[\begin{array}{ll}
\bar{V} & \tilde{V}
\end{array}\right]^{T}}_{V^{T}},
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ with

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>
$$

and $\bar{U} \in \mathbb{R}^{m \times r}, \tilde{U} \in \mathbb{R}^{m \times m-r}, \bar{V} \in \mathbb{R}^{n \times r}, \tilde{V} \in \mathbb{R}^{n \times n-r}$ with $U^{T} U=I_{m}$ and $V^{T} V=I_{n}$. The matrices I_{m} and I_{n} denote $m \times m$ and $n \times n$ identity matrices, respectively. The factorization in (18) is called he singular value decomposition of A and the numbers σ_{i} are the singular values. Note that columns assumed that A is real-valued, however, the columns of \tilde{V} are a basis of null space of A. Here we assumed that A is real-valued, however, the same definitions hold even if A is complex. In this case,
matrices U and V can be complex-valued and wherever we use matrix transpose, i.e., ${ }^{T}$, it should be replaced by matrix conjugate-transpose, i.e., *. However, the singular values σ_{i} are always real valued.

Matrix invers

A matrix $A \in \mathbb{R}^{n \times n}$ is invertible or non-singular if there exists a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A^{-1} A=A A^{-1}=I . \tag{19}
\end{equation*}
$$

For a 2×2 matrix A the inverse is computed as

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

A singular matrix $B \in \mathbb{R}^{n \times n}$ is a matrix that is not invertible. A singular matrix B always have $\operatorname{det}(B)=0$, and at least one eigenvalue is zero and hence there exist a null space to B

For singular matrices and non-square matrices, the (Moore-Penrose) pseudo inverse, denoted by ${ }^{\dagger}$ is a generalization of the matrix inverse. The pseudo inverse A^{\dagger} of the matrix $A \in \mathbb{R}^{m \times n}$ is unique and satisfies the four propertie

$$
\begin{align*}
A A^{\dagger} A & =A \tag{21}\\
A^{\dagger} A A^{\dagger} & =A^{\dagger} \\
\left(A A^{\dagger}\right)^{*} & =A A^{\dagger} \\
\left(A^{\dagger} A\right)^{*} & =A^{\dagger} A . \tag{23}
\end{align*}
$$

If A is invertible, then $A^{\dagger}=A^{-1}$
The pseudo inverse can be computed in different ways, e.g. using singular value decompositions In Matlab it can be computed using the command pinv

Jacobians and chain rule

Consider an m-dimensional vector-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The Jacobian matrix for thi function is defined as

$$
J_{f}(x)=\left[\begin{array}{cccc}
\frac{\partial f_{1}(x)}{\partial \partial_{1}} & \frac{\partial f_{1}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{2}(x)} \tag{25}\\
\frac{\partial x_{2}(x)}{\partial x_{1}} & \frac{\partial f_{2}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{n}(x)}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}(x)}{\partial \partial_{1}} & \frac{\partial f_{n}(x)}{\partial x_{2}} & \ldots & \frac{\partial f_{n}(x)}{\partial x_{n}}
\end{array}\right]
$$

which can be used to define the first order approximation of the function around x that is given as

$$
\begin{equation*}
f(z) \approx f(x)+J_{f}(x)(z-x) \tag{26}
\end{equation*}
$$

for every point z that is close enough to x. Now consider a vector-valued function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ that is defined as $h(x)=g(f(x))$ where $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is another vector-valued function. The Jacobian matrix for this function can be computed using the chain rule which states that
$J_{h}(x)=J_{g}(f(x)) J_{f}(x)$.

Note: It is not allowed to bring this document to an exam in TSRT09!

