
Multivariable control of
tank-system
Computer exercises in Control Theory, TSRT06/TSRT09

12 november 2020





1 Introduction

The purpose of these exercises is to provide opportunities to study vari-
ous aspects of multivariable dynamic systems and multivariable control
systems. This is done by using a simulation model of a system consisting
of four interconnected tanks. The system is described in detail in Section
2. The model is implemented in Simulink and features an animation that
illustrates the behavior of the system. The simulation model is described
in more detail in Section 3. . A brief review of useful MATLAB commands
is available in Section 4.

2 System description

The system is a non-linear simulation model of a tank system consisting
of four interconnected tanks. A schematic image of the tank system is
shown in figure 2. The simulation model imitates a lab process1 developed
at Lund University of Technology.

Tank 1 and tank 2 are at the lower left and the lower right respectively,
while tank 3 and 4 are the upper left and right respectively. The inputs
to the system are the voltages to the two pumps, where pump 1 is the left
one. How water from the pumps is distributed to the tanks is adjusted
by the paramters γi.

By representing the levels in the tanks with the variables xi and deno-
te the voltages of the pumps with the variables ui the system can be
described by the equations

ẋ1 =− a1

A1

√
2gx1 + a3

A1

√
2gx3 + γ1k1

A1
u1

ẋ2 =− a2

A2

√
2gx2 + a4

A2

√
2gx4 + γ2k2

A2
u2

ẋ3 =− a3

A3

√
2gx3 + (1− γ2)k2

A3
u2

ẋ4 =− a4

A4

√
2gx4 + (1− γ1)k1

A4
u1

(1)

The maximal water-level in the tanks is xi = 50.
1K-H Johansson. “The Quadruple Tank Process - A Multivariable Laboratory

Process with an Adjustable Zero.” IEEE Trans. on Control Systems Technology, 1999

1



In the equations above we use the following notation:

Ai – surface area for tank i
ai – outlet area for tank i
ki – gains in pumps
γi – valve setting for distribution

The objective is to control the levels of the lower tanks.

y1 = x1

y2 = x2
(2)

3 Description of the simulation environment

The non-linear tank-model is implemented in Simulink and the model is
shown in Figure 1.

u1

u2

x1

x2

x3

x4

Water tanks

Sum2

Sum1

Step2

Step1

Scope

u0(2)

Constant2

u0(1)

Constant1

x1

x2

x3

x4

Figur 1: Simulink model

The input signals are formed by a sum of a constants (blocks Constant)
and steps respectively (blocks Step). The constant inputs define the sta-
tionary point around which we model the system and perform small
steps.

2



The simulation model also has an animation that illustrates the behavior
of the tank system. The animation is shown in figure 2.

Figur 2: Animation of the tank-system

The numbers at the branch points and under “Valve Settings” indicate
how the flow is distributed between going to the upper and lower tanks
respectively. The distribution is determined by the variables γ1 (left side)
and γ2 (right side). These variables are called g1 and g2 in the interface.
You can also adjust the speed of the animation (number of updates of
the graphics per time unit) as well as turn off the animation completely.

3



The simulation and animation is used as follows:

• Start MATLAB.

• Define gamma, u0 and x0 as required in the exercise.

• Write tanks to start the animation. When the animation starts,
physical parameters in the model are defined (needed for the simu-
lation).

• Write watertanks in the command-line of MATLAB to open the
Simulink-model.

• With the slider Animation Speed it is possible to, within some
limits, control the speed of the animation.

• With the button Animation On/Off you can turn on and off the
animation and simply look at the Scopes in the Simulink model.
Simulation is much faster if the animation is turned off.

4



• To compute a stationary point of the tank-system, the MATLAB-
function statpoint is provided. It can be used in two ways:

1. Given the power to the pumps, u1 and u2, as well as the valve
positions γ1 and γ2, compute the stationary water levels in the
tanks.

x = statpoint([u1 u2],[],[g1 g2])

2. Given the water levels of tanks 1 and 2 and the valve-positions
γ1, γ2, compute the stationary levels of all tanks and the power
to the pumps (u1 and u2) that are required to maintain it.

[x,u] = statpoint([],[x1 x2],[g1 g2])

See also help statpoint.

• With the MATLAB-function tanklin a linearized model of the
tank-system can be computed in a certain stationary point, given
the levels of all tanks. This function is used as follows:

[A,B,C,D]=tanklin(x,[g1 g2])

A, B, C and D are the system matrices in the stationary point given
by the variable x. See also help tanklin.

4 Useful MATLAB-commands

The following MATLAB-commands can be useful.

eig Compute eigenvalues
ss Construct LTI-object on state-space form
tf Construct LTI-object as transfer function
bode Draw bodediagram
sigma Draw singular values
pole Compute poles
zero Compute zeros
place Compute a state feedback that places the closed loop system poles at desired positions
freqresp Compute G(ix)
evalfr Compute G(x)

5



5 Impact of stationary point

Task:

Determine the stationary points of the system by simulation in a few
different cases and investigate how the system’s properties depend on
the stationary point.

Hints:

• Create a variable gamma with γ1 = γ2 = 0.3 (note what that means
physically in terms of water flow in the system)

• Check that final values in the Step-blocks are 0.

• Set the initial state x0 to 0 (i.e. a vector of length 4 with zeros).

• Create a variable u0, first with input signals u1 = u2 = 3 and then
u1 = u2 = 5.

• Simulate the system until stationarity, and note the stationary le-
vels for the two cases (you can read these either in the animation
plots, the scopes, or check the variable x which has been saved to
the workspace)

• Determine the linearized system using the function tanklin and
compute poles and zeros in the two cases and compare them.

• Confirm that the stationary points found by simulation coincides
with analytic result you obtain when using statpoint with the
selected input levels

[xs,us] = statpoint(u0,[],gamma)

• Useful MATLAB-commands: eig, ss, zero.

Summary of results and observations:

6



6 Effects of the valve positions

Task:

Investigate how the system properties depend on the setting of the valves.
Be particulariy observant on zeros, and relate to the physical setup and
resulting water flow and why some configurations intuitively should be
hard to control.

Hints:

• Study the system around the stationary point given by input signal
combination u1 = u2 = 3.

[xs,us] = statpoint(u0,[],gamma)
[A,B,C,D]=tanklin(xs,[gamma])

• Study for instance the cases γ1 = γ2 = 0.3, γ1 = γ2 = 0.5 and
γ1 = γ2 = 0.7.

• Determine poles, zeros and singular values for models linearized in
the stationary points defined by the different cases.

• Useful MATLAB-commands: eig, zero, ss, sigma.

Summary of results and observations:

7



7 Impact of the direction of the input sig-
nal vector

Task:

Examine how the system’s step response depends on the direction of the
input vector at different valve settings.

Hints:

• Use the computed stationary point (stationary point) and settings
as in the previous task.

• Set the initial values of the tank levels using the variable x0 so that
the system is started in its stationary point (you will always do this
from now on, so this must be run when you change anything)

[x0,u0] = statpoint(u0,[],gamma)

• Select the amplitude of the blocks Step to make steps of a few cen-
timeters (i.e. not too large as that moves us way from the stationary
point where our linearized model is valid)

• Evaluate the transfer matrix of the system for s = 0 and choose
the input vector so as to achieve maximal resp. minimal gain. Use
Exempel 3.4 on page 76 in the course book as help to choose the
input signal. Note! Printing error in the book on page 77. In the
MATLAB-code it should be
» [V,D]=eig(g0’*g0)

• Useful MATLAB commands: freqresp, eig, sigma.

Summary of results and observations:

8



8 The meaning of a zero(*)

Task:

Verify equation (6) in Appendix A on the tank-system.

Hints:

• Choose γ1 = γ2 = 0.3, which gives a zero in the right half plane.

• Choose a stationary point that correspond to water levels roughly
in the middle of span for the upper tanks.

• Compute the linearized system and the zero z that is in the right
half plane. Compute a control input u0 that satisfies equation (5).

• Of course, one cannot apply an exponentially growing control signal
particularly long without the upper tanks either flood or dry out. If
necessary, scale down u0 so that it can simulate at least in 500−600
time units.

• Simulate the tank-system with the input u0ezt. Verify (6).

• The formula (6) assumes a linear system. The equation is no longer
valid when non-linear effects are too large. What non-linear effects
can be observed?

• Useful MATLAB-commands: zero, evalfr, eig.

9



9 RGA and single-variable control

Task:

Use RGA to pair each input with an output. Use a PID controller for
each such control circuit.

Remember that the PID-controllers should act on the deviations away
from the stationary point and the references are steps away from the
stationary point. Hence, when defining the control error you must not
forget to substract the stationary point from the measurement, and the
input to the system should be the signal computed by the controller plus
the stationary point input.

Hints:

• Test and comment on the differences between the cases γ1 = γ2 =
0.7, γ1 = γ2 = 0.3 and γ1 = γ2 = 0.5. It may be necessary to
linearize around different stationary points in these cases for the
levels to become sensible.

• Do not forget to set initial values. If they are set correctly, nothing
should happen until the steps occur.

• First, check the static RGA (i.e. at ω = 0), but try other ω values
as well.

• MATLAB code for calculating RGA can be found on page 244 in
the textbook.

• When you make steps, make sure they appear at different times
(Step Time in the block), so you can separate the effects on the
different tanks.

• Useful MATLAB-commands: freqresp.

Summary of results and observations:

10



10 Decoupling (frikoppling)

Task: Investigate how couplings can be reduced using a static decoupling
F̄ where F̄ is a constant matrix which is used to distribute the output
from a simple multivariable PID controller. In other words

U(s) = U0(s) + F̄Fdiag(s)(R(s)− (Y (s)− Y0(s)))

You can probably reuse your previous PID controllers.

Hints:

• Introduce, e.g., the controller using a single block of the type LTI
System which can be found in the library Blocksets&Toolboxes.
Alternatively build it using a series connection of a matrix-vector
multiplication and the PID controllers.

• Use blocks of the type Mux och Demux to create vectors from several
scalars and vice versa. These blocks can be found in the library
Signals&Systems.

• The constant input signal defining the stationary point is added
efter the decoupling.

• Repeat experiments with the different valve settings.

• Note how the voltages behave in the different settings when you
perform steps on the different tanks.

Sammanfattning av resultat och observationer:

11



v1

v2

y1

y2

y3

y4

Water tanks
Step2

Step1

Scope

F

LTI System

Demux

x0(2)

Constant4

x0(1)

Constant3

u0(2)

Constant2

u0(1)

Constant1

y3

y4

y1

y2

Figur 3: Typical Simulink model with a multivariable controller working
with deviations from a working-point.

12



11 Removed (but kept for numbering)

13



12 Control without feedforward

Task: In the previous controllers we have used a feedforward term with
the working-point input. Remove these and get your controller to work
anyway

U(s) = F (s)(R(s)− (Y (s)− Y0(s)))

Tips:

• Remove the feedforward terms.

• Start with a pure P-controller setting and γ1 = γ2 = 0.7 and then
try to improve the controller to remove stationary errors.

• Test the developed controller on the system when you change the
water tank to have γ1 = γ2 = 0.3.

• Try to achieve similiar performance also when you remove the de-
coupling.

14



13 State feedback

Task: Assume that all states in the system can be measured and intro-
duce state feedback on the form

u(t)− u0 = −L(x(t)− x0) + L0r(t)

Study how the choice of poles for the feedback system affects the speed
of the system and the size of the control signals.

Hints:

• Consider that the state-feedback is derived for the linearized system

d

dt
(x−x0) = A(x−x0) +B(u−u0), u−u0 = −L(x−x0) +L0r(t)

where x0, u0 correspond to the the stationary point.

• Test for instance the cases γ1 = γ2 = 0.3 and γ1 = γ2 = 0.7.

• Pole placement state feedback for multivariable systems can be
performed with the place function. Note however that in this case
a maximum of two poles can be placed in the exact same location
(computational limitation in the command).

• Begin by making the feedback system slightly faster than the open
loop system and then make it progressively faster.

• An example of a Simulink model with state feedback is given in the
figure below. The reference signals consist of steps around statio-
nary point u0, x0.

• Take steps in the respective reference signals individually as well
as combinations of them combinations of steps. Preferably, choose
different directions of the reference signal.

• Select the matrix L0 so that the linearized feedback system gets the
property Gc(0) = I. Since the simulation model is non-linear, this
will however not result in that the output signals become exactly
the same as the reference signals in steady state.

15



v1

v2

y1

y2

y3

y4

Watertanks

Sum8

Step2

Step1

Scope

L* u

Matrix
Gain2

L0* u

Matrix
Gain1

Demux

x0 Constant3

u0(2)

Constant2

u0(1)

Constant1

y1

y2

y3

y4

Figur 4: State feedback around stationary point

Summary of results and observations:

16



14 LQ state feedback

Task:

Design a controller based on linear quadratic theory. Investigate the case
that all tank levels are measured, i.e. that pure state feedback is possible.

Hints:

• Test and comment on the differences between the cases γ1 = γ2 =
0.7, γ1 = γ2 = 0.3 och γ1 = γ2 = 0.5. It may be necessary to
linearize around different equilibrium positions in these cases for
the levels to become sensible.

• The feed-forward L0 from the reference signal should be chosen
such that y − y0 = r in steady state.

• The command lqr is used.

• Investigate how different weights in the matrices Q1 and Q2 affect
control performance.

• Because we work with nonlinear system, one might obtain different
behaviors for different amplitudes on r. Do some experiments to
investigate this.

Summary of results and observations:

17



15 Observers

Task:

Design an observer that estimates the tank levels from the measured out-
put y. (Since the output signal measures the levels of the lower thoughts,
it is the estimates of the upper tank levels that are interesting.)

Hints:

• For example, take γ1 = γ2 = 0.7 and select x3 and x4 so that the
equilibrium levels in all the tanks is in the interval [1030] when
statpoint is used.

• If we have a linearized model
d

dt
(x− x0) = A(x− x0) +B(u− u0), y − y0 = C(x− x0) (3)

(where x0, u0, y0 are equilibrium levels) it is natural to write the
observer on the form

d

dt
x̂ = Ax̂+B(u− u0) +K(y − y0 − Cx̂) (4)

where x̂ is the estimate of x− x0.

• The observer becomes easier to understand if you use the blocks in
Simulink with vector-valued signals as inputs/outputs.

• Select K in the observer, for example by placing the eigenvalues
to A − KC. In MATLAB, this is done with the command K =
place(A’, C’, p)’ where p contains the desired poles. (Why do
we need to take the transpose of the matrices?)

• Test different initial values in the observer. Let u be some transient,
e.g. a step.

• Add noise to the measured signals, for example, by utilizing Simulink-
block ”Band-limited white noise”. What placements of the eigenva-
lues of A−KC are particularly sensitive to this?

• Add noise to the inflows. What placements of the eigenvalues of
A − KC are particularly sensitive to this? (Note that the obser-
ver should not get to ”know” the noise. The u that goes into the
observer is supposed to be without noise.)

18



Summary of results and observations:

19



16 Kalman-filter

Task:

Make the observer in the previous task a Kalman-filter by computing the
optimal K.

Hints:

• Apply white noise to measured signals and inflows. Vary the size of
these noise terms. The size determines the elements of the matrices
R1 and R2.

• The Kalman filter can be calculated by the lqe command in MAT-
LAB. Note that you can directly get the eigenvalues of A−KC as
an output of this function.

• Look in particular at the cases of large measurement noise – small
inflow noise, versus small measurement noise – large inflow noise.

• Test some case where the actual noise differs from the values of R1
and R2 used to compute K.

Summary of results and observations:

20



17 LQG

Task:

Design an LQG controller for the case that only the levels of the lower
tanks are measured. Make use of the results on LQ state feedback and the
Kalman filter. Can you observe any performance limitation when there
is a zero in the right half plane?

Hints:

• Test the differences between the cases γ1 = γ2 = 0.7, γ1 = γ2 = 0.3
and γ1 = γ2 = 0.5. It may be necessary to linearize around different
stationary points in these cases for the levels to make sense.

• The commands lqr and lqe in MATLAB solves the algebraic Ric-
catiekvationerna.

• Also investigate how the control performance is affected by noise
on both measurements and inflows.

Summary of results and observations:

21



A What is a zero?

For a SISO system with transfer function G(s) it holds that if the input
signal u equals eλt, the output y becomes

y(t) = G(λ)eλt + transients

If the system has all poles strictly in the left half plane, the transients die
out. The same formula applies in the multivariable case, (where we for
simplicity’s sake assume that u and y are vectors of the same dimension
= m) if the applied control signal components ui are given by ui(t) =
u0
i e
λt. The result is

y(t) = G(λ)u0eλt + transients

where u0 is a vector with components u0
i . In this case G is an m × m-

matrix. Now, assume that the system haz a zero in z. According to the
textbook, p. 66, it holds (since G is square) detG(z) = 0. Then there
exist a vector u0 such that

G(z)u0 = 0 (5)

If we apply the control input signal u(t) = u0ezt the output becomes

y(t) = G(z)u0ezt + transienter = 0 + transients (6)

This is particularly striking in case the system has a zero in the right half
plane: the output is zero although an exponentially increasing input.

22


