
Solution for TSRT09 Control Theory, 2024-03-22

1. (a) See Section 9.4 of the book.

(b) Compute the Jacobian linearization at x = 0:

A =
∂f

∂x

∣∣∣∣
x=0

=

[
−3 −2
1 1

]
Solving the characteristic equation

det(λI −A) = λ2 + 2λ− 1 = 0

gives λ1,2 = −1 ±
√
2. Since Re(λ1) < 0 and Re(λ2) > 0, the equilibium x = 0 is

a saddle point.

(c) Differentiate the output

y = x1

ẏ = x21 + x2

ÿ = 2x31 + 2x1x2 + u

and then choose as feedback law

u = −2x31 − 2x1x2 − x21 − x2 − 3x1 + r

(d) For small ϵ we have

|S(iω)| < ϵ ⇐⇒ |G(iω)Fy(iω)| > 1/ϵ; |T (iω)| < ϵ ⇐⇒ |G(iω)Fy(iω)| < ϵ

meaning that it should be

• |G(iω)Fy(iω)| > 100 for ω ≤ 1 rad/s
• |G(iω)Fy(iω)| < 0.01 for ω > 120 rad/s

2. (a) The pole polynomial is p(s) = (s − 1)(s + 1)(s + 3), hence the poles are s =
−3, −1, +1, all with multiplicity 1. There are no zeros.

(b) The singular values are the square roots of the eigenvalues of G∗(iω)G(iω). As G
is 2× 1, G∗G is 1× 1, i.e., there is only one singular value, shown in Fig. 1, left.

(c) The first component of G(s) is unstable, so the main priority is to stabilize that.

(d) This can be achieve trivially with a P-regulator Fy = [k1 k2] and Fr = I2. For
instance choosing k1 = 1 and k2 = 0.1, one gets that the closed loop transfer
function Gc=minreal(feedback(G*Fy,eye(2))) is

Gc =
1

(s+ 3.24)(s2 + 0.86s+ 1.914)

[
(s+ 3)2 0.1(s+ 3)2

(s− 2)(s− 1) 0.1(s− 2)(s− 1)

]
To check stability it is enough to notice that the poles in closed loop are s =
−0.43± 1.3148i, −3.24. The step response is shown in Fig. 1, right.

1



10
-2

10
-1

10
0

10
1

10
2

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

(G)

Frequency (rad/s)

S
in

g
u
la

r 
V

a
lu

e
s
 (

d
B

)

Figure 1: Ex. 2. Left: Singular value; right: step responses.

3. (a) Computing the state covariance Πx means solving the Lyapuov equation

AΠx +ΠxA
T + ρ1NNT = 0, where ρ1 = covariance of v1. Denoting Πx =

[
p1 p2
p2 p3

]
and inserting the values of A and N into the Lyapunov equation, one gets

2p1 = ρ1, 3p2 = ρ1, 4p3 = ρ1 =⇒ Πx = ρ1

[
1/2 1/3
1/3 1/4

]
(b) In the Laplace domain

Y (s) =
[
G1(s) 1

] [V1(s)
V2(s)

]
where the transfer function from v1 to y is

G1(s) = C(sI −A)−1B =
2s+ 3

(s+ 1)(s+ 2)

Since v1 and v2 are uncorrelated, their cross-spectrum is 0, and the spectrum of
the output is

Φy(ω) =
[
G1(iω) 1

] [Φv1(ω) 0
0 Φv2(ω)

] [
G∗

1(iω)
1

]
=ρ1|G1(iω)|2 + ρ2 = ρ1

(9 + 4ω2)

(1 + ω2)(4 + ω2)
+ ρ2

(c) The Kalman filter for the system is

˙̂x =

[
−1 0
0 −2

]
x̂+K

(
y −

[
1 1

]
x̂
)

where K = 1
ρ2
P

[
1
1

]
with P = P T > 0 solving the associated ARE. With ρ1 =

ρ2 = 1 it is

P =

[
0.3322 0.2470
0.2470 0.2000

]
and hence K =

[
0.5792
0.4471

]
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4. (a) The extended system is

Ge =


0 Wu

0 WTG
WS WSG
1 G

 =


0 1

s+1

0 (s+1)(s−3)
(s+0.1)(s+2)(s+4)

2
s+1

2(s−3)
(s+0.1)(s+1)(s+2)

1 s−3
(s+0.1)(s+2)


(b) The H∞ problem is feasible for γ = 1 and γ = 5, but not for γ = 0.5.

(c) We obviously choose γ = 1 because it corresponds to a lower impact of the distur-
bance on the system.

(d) The regulator associated to γ = 1 is

Fy =
−198.64(s+ 4)(s+ 2)(s+ 0.1)

(s+ 3.916)(s+ 1.045)(s2 + 36.19s+ 570.3)

S, T and Gwu for the H∞ design are shown in Fig. 2.
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Figure 2: H∞ loopshaping design for γ = 1 in Ex. 4. Lower plot: step response.

(e) The plant G is non-minimum phase: it has a zero in the right half plane. Such zero
is also in the closed loop system, hence we expect that the step response starts “in
the wrong direction”, see Fig. 2.

5. (a) The describing function for a saturation is given in the Appendix of Ch 14.

Yf (C) =

{
2
π (arcsin(

1
C )) +

√
1
C2 − 1

C4 C > 1

1 C ≤ 1
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Since Yf (C) is real, we need to find the value of ω at which

G(iω) = K
−4ω + i(ω2 − 3)

ω(ω2 + 1)(ω2 + 9)

becomes real, which is ω =
√
3. When C grows, the curve − 1

Yf (C) “starts” at -1

and continues towards the left, see Fig. 3. At ω =
√
3, it is |G(i

√
3)| = K

12 , meaning
that intersection is possible only if K ≥ 12, see Fig. 3.
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Figure 3: Describing function exercise.

(b) For K ≥ 12 the intersection of − 1
Yf (C) with G(iω) (yellow curve in Fig. 3) is as in

Fig. 14.9(a) of the book, namely the self-sustained oscillations are predicted to be
stable.

(c) For K < 12 the entire curve − 1
Yf (C) is “above” G(iω) (green curve in Fig. 3). Hence

in this case the situation is similar to that of Fig. 14.10(a) of the book, and leads
to vanishing oscillations.
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