Solution for TSRT09 Control Theory, 2023-08-22

1. (a) A system is non-minimum phase e.g. when it has a zero in the RHP, or a delay (in general, in the SISO case: when the inverse of its transfer function is unstable).
(b) For perfect disturbance cancelation $(y=0)$ you need $u=-2(s+1) d /(s+3)$. The static gain $d \rightarrow u$ in this expression is $2 / 3$. Since the maximal amplitude of the disturbance is $|d|=3$, you need an input amplitude of at least 2 for u, which is at odds with the constraint $|u| \leq 1$. Hence the answer is no.
(c) The pole polynomial is $p(s)=(s+1)(s+3)(s+5)$ and the poles are $-1,-3,-5$, all with multiplicity 1.
(d) Use the spectral factorization theorem: given a spectrum $\Phi_{v}(\omega)$ write it as $\Phi_{v}(\omega)=$ $|G(i \omega)|^{2}$, where $G(s)$ is a linear, stable transfer function. Simulate this linear system driven by white noise.
(e) The Bode integral theorem says that, under the assumption that the loop gain decays at least as $|s|^{-2}$, then it has to have at least an unstable pole.
2. (a)

$$
G(0)=\left[\begin{array}{cc}
1 / 2 & 5 \\
4 / 3 & 3 / 4
\end{array}\right] \Rightarrow R G A(0)=\left[\begin{array}{cc}
-0.0596 & 1.0596 \\
1.0596 & -0.0596
\end{array}\right]
$$

The $u_{1} \leftrightarrow y_{1}, u_{2} \leftrightarrow y_{2}$ pairing is unsuitable as it corresponds to negative diagonal elements. Instead the other pairing $u_{1} \leftrightarrow y_{2}, u_{2} \leftrightarrow y_{1}$ corresponds to off-diagonal elements that are close to 1 , hence it should work.
(b) Using

$$
F_{y_{2}}=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

The pole polynomial for the closed loop system $G_{c_{2}}=\left(I+G F_{y_{2}}\right)^{-1} G$ (taking $\left.F_{r_{2}}=I\right)$

$$
p(s)=s^{4}+28 s^{3}+249 s^{2}+854 s+932
$$

gives the poles

$$
-14.7607,-6.4512,-4.7101,-2.0780
$$

Using instead $F_{y_{1}}$ would lead to the closed-loop poles

$$
-15.8194,-4.0000,-2.0978,3.9173
$$

i.e., to an unstable closed-loop system, as expected from RGA.
(c) Computing $S=\left(I+G F_{y_{2}}\right)^{-1}$, one gets the singular values shown in Fig. 1. Constant disturbances and low-frequency disturbance, up to around $1 \mathrm{rad} / \mathrm{s}$, get an attenuation of around 10 dB . The 3 dB threshold is passed at around $5 \mathrm{rad} / \mathrm{s}$.

Figure 1: Ex. 2. Singular values of S.
3. (a) The extended system is

$$
G_{e}=\left[\begin{array}{cc}
0 & W_{u} \\
0 & W_{T} G \\
W_{S} & W_{S} G \\
1 & G
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{10}{s+1} \\
0 & \frac{(s+2)}{(s+0.2)(s+5)} \\
\frac{K(s+3)}{(s+1)(s+5)} & \frac{K(s+2)(s+3)}{(s+0.2)(s+1)^{2}(s+5)} \\
1 & \frac{s+2}{(s+0.2)(s+1)}
\end{array}\right]
$$

(b) Since what matters is $W_{S}^{-1}, K=10$ pushes down S at low frequencies more than $K=1$, hence we choose $K=10$.
(c) The resulting \mathcal{H}_{2} controller is

$$
F_{y}=\frac{4.84 \cdot 10^{6}(s+4.019)(s+0.2)}{\left(s+1.55 \cdot 10^{7}\right)(s+4.981)(s+0.7114)}
$$

S, T and $G_{w u}$ for the two designs are shown in Fig. 2.

Figure 2: \mathcal{H}_{2} loopshaping for $K=1$ (blue) and $K=10$ (green) design of Ex. 3.
(d) As can be seen in Fig. 2, the $K=10$ loopshaping (green) corresponds to lower sensitivity at low frequencies, compensated however by a higher complementary sensitivity T and higher $G_{w u}$ at all frequencies. Also the static gain and cross over frequency are higher for the $K=10$ design, see G_{c} plot in Fig. 2.
4. The cubic nonlinearity is such that $k_{1}=1 \leq \frac{f(u)}{u} \leq \infty=k_{2}$, see Fig. 3(a). This means that the "forbidden region" in the circle criterion is a disk passing through -1 and 0 (blue disk in Fig. 3(b)). From Fig. 3(b), only the Nyquist curve of G_{2} does not intersects this disk, hence this is the only stable closed loop system. It is so for all values of $K>0$.

Figure 3: Ex. 4. (a): The cubic nonlinearity f (blue). The k_{1} and k_{2} lines are in red. (b): Nyquist diagrams of $G_{i}(s)$ (red) and disk for f (blue).
5. (a) It is straightforward to check that $x_{\text {eq }}=0$ is an equilibrium point. The Jacobian linearization of the system at $x_{\text {eq }}$ is

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

which has eigenvalues $\lambda=0$ (of multiplicity 2) and $\lambda=1$. Hence the open loop system is unstable.
(b) The controllability matrix for the linearization

$$
S=\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

has full rank, hence we can use the Jacobian linearization for local stabilization. One possible gain is $L=\left[\begin{array}{lll}18 & 7 & 24\end{array}\right]$ which places the closed-loop poles of $A-B L$ in $\{-1,-2,-3\}$.
(c) Differentiating the output, for $h_{1}(x)$ it is

$$
\begin{aligned}
& \dot{y}=x_{1}^{3}+x_{2} \\
& \ddot{y}=3 x_{1}^{5}+3 x_{1}^{2} x_{2}+u
\end{aligned}
$$

meaning that the relative degree is 2 , while for $h_{2}(x)$ it is

$$
\begin{aligned}
& \dot{y}=x_{3}+\sin x_{1} \\
& \ddot{y}=x_{3}+\sin x_{1}+x_{1}^{3} \cos x_{1}+x_{2} \cos x_{1} \\
& \dddot{y}=x_{3}+\left(1-x_{1}^{3}\left(x_{1}^{3}+x_{2}\right)-x_{2}\right) \sin x_{1}+\cos x_{1}\left(x_{1}^{3}+x_{2}\right)\left(1+3 x_{1}^{2}\right)+u \cos x_{1}
\end{aligned}
$$

i.e., the relative degree is 3 . Only the latter case leads to an easy feedback linearization, as there is no zero dynamics.

