
Solution for TSRT09 Control Theory, 2023-08-22

1. (a) A system is non-minimum phase e.g. when it has a zero in the RHP, or a delay (in
general, in the SISO case: when the inverse of its transfer function is unstable).

(b) For perfect disturbance cancelation (y = 0) you need u = −2(s+ 1)d/(s+ 3). The
static gain d → u in this expression is 2/3. Since the maximal amplitude of the
disturbance is |d| = 3, you need an input amplitude of at least 2 for u, which is at
odds with the constraint |u| ≤ 1. Hence the answer is no.

(c) The pole polynomial is p(s) = (s+ 1)(s+ 3)(s+ 5) and the poles are −1, −3, −5,
all with multiplicity 1.

(d) Use the spectral factorization theorem: given a spectrum Φv(ω) write it as Φv(ω) =
|G(iω)|2, where G(s) is a linear, stable transfer function. Simulate this linear
system driven by white noise.

(e) The Bode integral theorem says that, under the assumption that the loop gain
decays at least as |s|−2, then it has to have at least an unstable pole.

2. (a)

G(0) =

[
1/2 5
4/3 3/4

]
⇒ RGA(0) =

[
−0.0596 1.0596
1.0596 −0.0596

]
The u1 ↔ y1, u2 ↔ y2 pairing is unsuitable as it corresponds to negative diagonal
elements. Instead the other pairing u1 ↔ y2, u2 ↔ y1 corresponds to off-diagonal
elements that are close to 1, hence it should work.

(b) Using

Fy2 =

[
0 2
2 0

]
The pole polynomial for the closed loop system Gc2 = (I + GFy2)−1G (taking
Fr2 = I)

p(s) = s4 + 28s3 + 249s2 + 854s+ 932

gives the poles
−14.7607, −6.4512, −4.7101, −2.0780

Using instead Fy1 would lead to the closed-loop poles

−15.8194, −4.0000, −2.0978, 3.9173

i.e., to an unstable closed-loop system, as expected from RGA.

(c) Computing S = (I +GFy2)−1, one gets the singular values shown in Fig. 1. Con-
stant disturbances and low-frequency disturbance, up to around 1 rad/s, get an
attenuation of around 10 dB. The 3 dB threshold is passed at around 5 rad/s.

1



S
2

Frequency (rad/s)

S
in

g
u

la
r 

V
a

lu
e

s
 (

d
B

)

Figure 1: Ex. 2. Singular values of S.

3. (a) The extended system is

Ge =


0 Wu

0 WTG
WS WSG
1 G

 =


0 10

s+1

0 (s+2)
(s+0.2)(s+5)

K(s+3)
(s+1)(s+5)

K(s+2)(s+3)
(s+0.2)(s+1)2(s+5)

1 s+2
(s+0.2)(s+1)


(b) Since what matters is W−1

S , K = 10 pushes down S at low frequencies more than
K = 1, hence we choose K = 10.

(c) The resulting H2 controller is

Fy =
4.84 · 106(s+ 4.019)(s+ 0.2)

(s+ 1.55 · 107)(s+ 4.981)(s+ 0.7114)

S, T and Gwu for the two designs are shown in Fig. 2.
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Figure 2: H2 loopshaping for K = 1 (blue) and K = 10 (green) design of Ex. 3.
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(d) As can be seen in Fig. 2, the K = 10 loopshaping (green) corresponds to lower
sensitivity at low frequencies, compensated however by a higher complementary
sensitivity T and higher Gwu at all frequencies. Also the static gain and cross over
frequency are higher for the K = 10 design, see Gc plot in Fig. 2.

4. The cubic nonlinearity is such that k1 = 1 ≤ f(u)
u ≤ ∞ = k2, see Fig. 3(a). This means

that the “forbidden region” in the circle criterion is a disk passing through −1 and 0
(blue disk in Fig. 3(b)). From Fig. 3(b), only the Nyquist curve of G2 does not intersects
this disk, hence this is the only stable closed loop system. It is so for all values of K > 0.
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Figure 3: Ex. 4. (a): The cubic nonlinearity f (blue). The k1 and k2 lines are in red. (b):
Nyquist diagrams of Gi(s) (red) and disk for f (blue).

5. (a) It is straightforward to check that xeq = 0 is an equilibrium point. The Jacobian
linearization of the system at xeq is

A =

0 1 0
0 0 0
1 0 1

 , B =

0
1
0


which has eigenvalues λ = 0 (of multiplicity 2) and λ = 1. Hence the open loop
system is unstable.
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(b) The controllability matrix for the linearization

S = [B AB A2B] =

0 1 0
1 0 0
0 0 1


has full rank, hence we can use the Jacobian linearization for local stabilization.
One possible gain is L =

[
18 7 24

]
which places the closed-loop poles of A−BL

in {−1, −2, −3}.
(c) Differentiating the output, for h1(x) it is

ẏ = x31 + x2

ÿ = 3x51 + 3x21x2 + u

meaning that the relative degree is 2, while for h2(x) it is

ẏ = x3 + sinx1

ÿ = x3 + sinx1 + x31 cosx1 + x2 cosx1
...
y = x3 +

(
1− x31(x31 + x2)− x2

)
sinx1 + cosx1(x

3
1 + x2)(1 + 3x21) + u cosx1

i.e., the relative degree is 3. Only the latter case leads to an easy feedback lin-
earization, as there is no zero dynamics.
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