
Solution for TSRT09 Control Theory, 2023-06-07

1. (a) See book.
(b) The system ẋ = −2x + v is stable, and therefore we can use Theorem 5.3 in the

book, and compute the variance of x, Πx, as solution of the Lyapunov equation
AΠx + ΠxA

T + BRBT = 0, where A = −2, B = 1, and R = r. The solution is
Πx = r

4 .

(c) The observability matrix: O =

[
C
CA

]
=

[
1 0
a b

]
has full rank if and only if b 6= 0

(a can be anything).

(d) The controllability matrix S =
(
B AB

)
=

(
1 −1
0 0

)
has rank 1, hence the system

is not controllable. The controllable subspace is given by
(
x1
0

)
but the unstable

pole does not belong to it. Hence the system is not stabilizable.
(e) Differentiating: ẏ = ẋ1 + ẋ2 = sinx2 + bu + u. When b 6= −1, the input appears.

When b = −1, it is ẏ = sinx2 and ÿ = u cosx2, and we have relative degree 2.

2. (a) The minors are 2
s+2 ,

1
s+1 ,

4
s+2 ,

3
s+2 , and

2(s−1)
(s+2)2(s+1)

. The pole polynomial is p(s) =

(s+ 2)2(s+ 1), meaning that the system has two poles in −2.

(b) RGA(G(0)) = G(0). ∗ (G†(0))T =

(
−3 4
4 −3

)
. The best pairing is u1 ↔ y2 and

u2 ↔ y1.
(c) For U2 = −KY2 one gets Y2 = G21U1 −KG22Y2 ⇐⇒ Y2 = G21

1+KG22
U1. Inserting

this into Y1 = G11U1 − G12KY2, one gets Y1 = 2s2+(6+2K)s+4−2K
(s+2)(s+1)(s+2+3K)U1 = G̃U1 and

G̃(0) = 2−K
2+3K .

(d) Recalling the interpretation of RGA given in the book, the entry (1,1) in RGA(G(0))
corresponds to G̃(0)

∣∣∣
K=0
· 1
G̃(0)

∣∣∣
K=∞

= −3.

3. (a) The minimal state space realization of G(s) in controller canonical form is

A =

[
−1.2 −0.2

1 0

]
, B =

[
1
0

]
, C =

[
1 2

]
(b) Assuming

Q1 = I2, Q2 = 1, R1 = 1, and R2 = 1

and using lqe+lqr (or lqg) one gets

K1 =

[
0.4690
0.3963

]
, L1 =

[
0.8198 0.8198

]
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(c) To make the regulation faster it is enough to increase Q1 (or to reduce Q2). For
instance, taking Q1 = 100I2, one gets

K2 = K1, L2 =
[
9.8020 9.8020

]
The two step responses are shown in Fig. 1(a). The blue one (corresponding to
Q1 = 100I2) is faster.

(d) S and T are plotted in Fig. 1(b). The blue system is less sensitive to system
disturbances (because the input is allowed to be larger) but more sensitive to
measurement noise (for the same reason).

(e) The system G̃(s) is non-minimum phase (zero in RHP), hence in the step response
we expect that the output starts on the wrong direction. This is indeed what
happens, see Fig. 1(c).
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Figure 1: Ex. 3. (a): Step responses. (b): S and T for the two controllers. (c): Step response
for the non-minimum phase system G̃(s).

4. (a) Self-sustained oscillations are present when −1
Yf (C) = G(iω)⇔ −(1+C2) = G(iω) =

iK(ω2−2)
ω(ω2+1)(ω2+4)

+ −3K
(ω2+1)(ω2+4)

. The left-hand side is real and negative, with a max-
imum value of −1 when C = 0. Intersections can occur when im(G(iω)) = 0,
which corresponds to ω =

√
2. Furthermore, in ω =

√
2, G(i

√
2) = −K

6 , and the
condition forintersections becomes −K6 < −1, that is, K > 6.

(b) When oscillations occur, it is −(1 + C2) = −K
6 ⇒ C =

√
K
6 − 1.
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(c) An increase in the amplitude C corresponds to a movement towards left on the
curve −1

Yf (C) . The system is therefore stable for large amplitudes and unstable for
small amplitudes, meaning that the self-sustained oscillation is stable in amplitude.

5. (a) The only equilibrium point of the system is xeq = 0.

(b) The Jacobian linearization of the system at xeq = 0 gives A =

[
0 2
−1 0

]
which has

purely imaginary eigenvalues λ1,2 = ±i
√

2. Hence the stability character of xeq = 0
cannot be decided by the linearization. One can try Lyapunov functions, and one
possible Lyapunov function is V (s) = 1

2(x21 + 2x22). This is positive definite and
has derivative V̇ (x) = −x21x22 which is negative semidefinite. Hence the equilibrium
point is at least stable. To check that it is also asymptotically stable, one must
consider the level sets of V (x):

L = {x s.t. V̇ (x) = 0} = {x s.t. either x1 = 0 or x2 = 0}

and show that there are no trajectories of the system that lie in L:

x1 = 0⇒ ẋ2 = 0⇒ x2 = const⇒ ẋ1 = 2x2 6= 0⇒ x1 changes
x2 = 0⇒ ẋ1 = 0⇒ x1 = const⇒ ẋ2 = −x1 6= 0⇒ x2 changes

Hence no other trajectory that the equilibrium point xeq = 0 lies in L, meaning
that xeq = 0 is asymptotically stable.

(c) We have already computed the Jacobian linearization matrix A. The input matrix

is B =

[
1
0

]
, and the pair (A, B) is controllable, hence one can use Jacobian lin-

earization to design a controller. For instance, L =
[
3 0

]
places the poles of the

linearized closed loop A − BL in −1, −2. The linear controller u = −Lx is valid
locally also for the nonlinear system.

(d) For the original nonlinear system, choosing a change of feedback u = x1x
2
2+v leads

to a linear dynamics

ẋ =

[
0 2
−1 0

]
x+

[
1
0

]
v

which is controllable, and for which the same linear feedback v = −Lx used above
is valid. Hence the complete nonlinear feedback is u = x1x

2
2 − Lx.

(e) Any of the above would do. Notice that since xeq = 0 is already asymptotically
stable, even u = 0 would be a correct answer...
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