Solution for TSRT09 Control Theory, 2023-06-07

1. (a) See book.
(b) The system $\dot{x}=-2 x+v$ is stable, and therefore we can use Theorem 5.3 in the book, and compute the variance of x, Π_{x}, as solution of the Lyapunov equation $A \Pi_{x}+\Pi_{x} A^{T}+B R B^{T}=0$, where $A=-2, B=1$, and $R=r$. The solution is $\Pi_{x}=\frac{r}{4}$.
(c) The observability matrix: $\mathcal{O}=\left[\begin{array}{c}C \\ C A\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ a & b\end{array}\right]$ has full rank if and only if $b \neq 0$ (a can be anything).
(d) The controllability matrix $\mathcal{S}=\left(\begin{array}{ll}B & A B\end{array}\right)=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$ has rank 1, hence the system is not controllable. The controllable subspace is given by $\binom{x_{1}}{0}$ but the unstable pole does not belong to it. Hence the system is not stabilizable.
(e) Differentiating: $\dot{y}=\dot{x}_{1}+\dot{x}_{2}=\sin x_{2}+b u+u$. When $b \neq-1$, the input appears. When $b=-1$, it is $\dot{y}=\sin x_{2}$ and $\ddot{y}=u \cos x_{2}$, and we have relative degree 2 .
2. (a) The minors are $\frac{2}{s+2}, \frac{1}{s+1}, \frac{4}{s+2}, \frac{3}{s+2}$, and $\frac{2(s-1)}{(s+2)^{2}(s+1)}$. The pole polynomial is $p(s)=$ $(s+2)^{2}(s+1)$, meaning that the system has two poles in -2 .
(b) $R G A(G(0))=G(0) . *\left(G^{\dagger}(0)\right)^{T}=\left(\begin{array}{cc}-3 & 4 \\ 4 & -3\end{array}\right)$. The best pairing is $u_{1} \leftrightarrow y_{2}$ and $u_{2} \leftrightarrow y_{1}$.
(c) For $U_{2}=-K Y_{2}$ one gets $Y_{2}=G_{21} U_{1}-K G_{22} Y_{2} \Longleftrightarrow Y_{2}=\frac{G_{21}}{1+K G_{22}} U_{1}$. Inserting this into $Y_{1}=G_{11} U_{1}-G_{12} K Y_{2}$, one gets $Y_{1}=\frac{2 s^{2}+(6+2 K) s+4-2 K}{(s+2)(s+1)(s+2+3 K)} U_{1}=\tilde{G} U_{1}$ and $\tilde{G}(0)=\frac{2-K}{2+3 K}$.
(d) Recalling the interpretation of RGA given in the book, the entry $(1,1)$ in RGA(G(0)) corresponds to $\left.\left.\tilde{G}(0)\right|_{K=0} \cdot \frac{1}{\tilde{G}(0)}\right|_{K=\infty}=-3$.
3. (a) The minimal state space realization of $G(s)$ in controller canonical form is

$$
A=\left[\begin{array}{cc}
-1.2 & -0.2 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

(b) Assuming

$$
Q_{1}=I_{2}, \quad Q_{2}=1, \quad R_{1}=1, \quad \text { and } \quad R_{2}=1
$$

and using lqe + lqr (or lqg) one gets

$$
K_{1}=\left[\begin{array}{l}
0.4690 \\
0.3963
\end{array}\right], \quad L_{1}=\left[\begin{array}{ll}
0.8198 & 0.8198
\end{array}\right]
$$

(c) To make the regulation faster it is enough to increase Q_{1} (or to reduce Q_{2}). For instance, taking $Q_{1}=100 I_{2}$, one gets

$$
K_{2}=K_{1}, \quad L_{2}=\left[\begin{array}{ll}
9.8020 & 9.8020
\end{array}\right]
$$

The two step responses are shown in Fig. 1(a). The blue one (corresponding to $\left.Q_{1}=100 I_{2}\right)$ is faster.
(d) S and T are plotted in Fig. 1(b). The blue system is less sensitive to system disturbances (because the input is allowed to be larger) but more sensitive to measurement noise (for the same reason).
(e) The system $\tilde{G}(s)$ is non-minimum phase (zero in RHP), hence in the step response we expect that the output starts on the wrong direction. This is indeed what happens, see Fig. 1(c).

(c)

Figure 1: Ex. 3. (a): Step responses. (b): S and T for the two controllers. (c): Step response for the non-minimum phase system $\tilde{G}(s)$.
4. (a) Self-sustained oscillations are present when $\frac{-1}{Y_{f}(C)}=G(i \omega) \Leftrightarrow-\left(1+C^{2}\right)=G(i \omega)=$ $\frac{i K\left(\omega^{2}-2\right)}{\omega\left(\omega^{2}+1\right)\left(\omega^{2}+4\right)}+\frac{-3 K}{\left(\omega^{2}+1\right)\left(\omega^{2}+4\right)}$. The left-hand side is real and negative, with a maximum value of -1 when $C=0$. Intersections can occur when $\operatorname{im}(G(i \omega))=0$, which corresponds to $\omega=\sqrt{2}$. Furthermore, in $\omega=\sqrt{2}, G(i \sqrt{2})=\frac{-K}{6}$, and the condition forintersections becomes $\frac{-K}{6}<-1$, that is, $K>6$.
(b) When oscillations occur, it is $-\left(1+C^{2}\right)=\frac{-K}{6} \Rightarrow C=\sqrt{\frac{K}{6}-1}$.
(c) An increase in the amplitude C corresponds to a movement towards left on the curve $\frac{-1}{Y_{f}(C)}$. The system is therefore stable for large amplitudes and unstable for small amplitudes, meaning that the self-sustained oscillation is stable in amplitude.
5. (a) The only equilibrium point of the system is $x_{\mathrm{eq}}=0$.
(b) The Jacobian linearization of the system at $x_{\text {eq }}=0$ gives $A=\left[\begin{array}{cc}0 & 2 \\ -1 & 0\end{array}\right]$ which has purely imaginary eigenvalues $\lambda_{1,2}= \pm i \sqrt{2}$. Hence the stability character of $x_{\text {eq }}=0$ cannot be decided by the linearization. One can try Lyapunov functions, and one possible Lyapunov function is $V(s)=\frac{1}{2}\left(x_{1}^{2}+2 x_{2}^{2}\right)$. This is positive definite and has derivative $\dot{V}(x)=-x_{1}^{2} x_{2}^{2}$ which is negative semidefinite. Hence the equilibrium point is at least stable. To check that it is also asymptotically stable, one must consider the level sets of $V(x)$:

$$
\mathcal{L}=\{x \text { s.t. } \dot{V}(x)=0\}=\left\{x \text { s.t. either } x_{1}=0 \text { or } x_{2}=0\right\}
$$

and show that there are no trajectories of the system that lie in \mathcal{L} :

$$
\begin{array}{lllc}
x_{1}=0 \Rightarrow & \dot{x}_{2}=0 \Rightarrow & x_{2}=\mathrm{const} \Rightarrow & \dot{x}_{1}=2 x_{2} \neq 0 \Rightarrow \\
x_{2}=0 \Rightarrow & \dot{x}_{1}=0 \Rightarrow & x_{1} \text { changes } \\
x_{1}=\mathrm{const} \Rightarrow & \dot{x}_{2}=-x_{1} \neq 0 \Rightarrow & x_{2} \text { changes }
\end{array}
$$

Hence no other trajectory that the equilibrium point $x_{\text {eq }}=0$ lies in \mathcal{L}, meaning that $x_{\mathrm{eq}}=0$ is asymptotically stable.
(c) We have already computed the Jacobian linearization matrix A. The input matrix is $B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and the pair (A, B) is controllable, hence one can use Jacobian linearization to design a controller. For instance, $L=\left[\begin{array}{ll}3 & 0\end{array}\right]$ places the poles of the linearized closed loop $A-B L$ in $-1,-2$. The linear controller $u=-L x$ is valid locally also for the nonlinear system.
(d) For the original nonlinear system, choosing a change of feedback $u=x_{1} x_{2}^{2}+v$ leads to a linear dynamics

$$
\dot{x}=\left[\begin{array}{cc}
0 & 2 \\
-1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0
\end{array}\right] v
$$

which is controllable, and for which the same linear feedback $v=-L x$ used above is valid. Hence the complete nonlinear feedback is $u=x_{1} x_{2}^{2}-L x$.
(e) Any of the above would do. Notice that since $x_{\text {eq }}=0$ is already asymptotically stable, even $u=0$ would be a correct answer...

