
Solution for TSRT09 Control Theory, 2023-03-24

1. (a) See section 7.4 of the book.
(b) (i) The controllability matrix

S =


1 0 −2 0 4 0 −8 0
0 2 0 −2 0 2 0 −2
1 0 −1 0 1 0 −1 0
0 −2 0 2 0 −2 0 2


has rank(S) = 3, hence the system is not controllable. The controllable sub-
space (i.e., range(S)) is for instance generated by

span




1
0
1
0

 ,


0
1
0
−1

 ,


2
0
−1

0




(ii) The observability matrix

O =



1 1 0 0
0 0 1 1
−2 −1 0 0

0 0 −1 −1
4 1 0 0
0 0 1 1
−8 −1 0 0

0 0 −1 −1


has rank(O) = 3, hence the system is not observable. The non-observable
subspace (i.e., ker(O)) is for instance generated by

span




0
0
1
−1




(iii) Since all eigenvalues of A are in LHP, the system is both stabilizable and
detectable.

(iv) Since the system is neither controllable nor observable the realization is not
minimal.

(v) G(s) is straightforwardly computed as

G =

[ 1
s+2

2
s+1

1
s+1

−2
s+1

]
of pole polynomial p(s) = (s + 1)2(s + 2) and zero polynomial z(s) = 2s + 3.
Hence the poles are s = −1 of multiplicity 2, and s = −2 of multiplicity 1.
The zero is s = −1.5.
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2. (a) From x = F (s)v1 = 1
s+2v1, the spectrum is φx(ω) = F (iω)r1F

∗(iω) = r1
ω2+4

. The
variance of x, πx = E[x2], can be computed from the Lyapunov equation (Theorem
5.3 of the book)

−2πx − 2πx + r1 = 0 =⇒ πx =
r1
4

(b) The observer equation can be rewritten as ˙̂x = −(2 + K)x̂ + Ky. Laplace trans-
forming: G(s) = K

s+2+K .

(c) Similarly, ˙̃x = −(2 +K)x̃+ v1 −Kv2. Laplace transforming:

H1(s) =
1

s+ 2 +K
, H2(s) = − K

s+ 2 +K

The associated variances can be computed solving Lyapunov equations, similarly
to (a):

E
[
x̃21
]

=
r1

2(2 +K)
, E

[
x̃22
]

=
r2K

2

2(2 +K)

(d) We need to find the minimum of the total variance V (K) = r1+r2K2

2(2+K) . If 2 +K > 0

(i.e., when the observer is stable), then V (K) > 0, and its minimum in K can be
found computing where the derivative vanishes:

∂V (K)

∂K
=

2r2K
2 + 8r2K − 2r1
4(2 +K)2

= 0 =⇒ K1,2 = −2±
√

4 +
r1
r2

To guarantee stability of the observer (i.e., −(2 + K) < 0) we need to chose the
solution with + sign: Kmin = −2 +

√
4 + r1

r2
.

(e) The Kalman filter is obtained choosing Kkalman = p/r2, where p solves the Riccati
equation:

−2p− 2p− p2

r2
+ r1 = 0 =⇒ p1,2 = −2r2 ±

√
4r22 + r1r2

Also here, since p must be positive definite, we must choose the solution with +

sign: Kkalman = −2 +
√

4 + r1
r2
. Not surprisingly, it is Kkalman = Kmin.

3. (a) The extended system is

Ge =


0 Wu

0 WTG
WS WSG
1 G

 =


0 1

0 (s+1)(s+2)
(s+0.1)(s+3)(s+10)

10
s+1

10
(s+0.1)(s+3)

1 s+1
(s+0.1)(s+3)


(b) For γ = 3.0644, the H∞ controller is

Fy =
294.19(s+ 10)(s+ 3)(s+ 0.1)

(s+ 99.05)(s+ 10.03)(s+ 1.301)(s+ 1)
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(c) The H2 controller is

Fy =
6.0952(s+ 10)(s+ 3)(s+ 0.1)

(s+ 10.06)(s+ 4.505)(s+ 1)(s+ 0.8632)

(d) S, T and Gwu for the two designs are shown in Fig. 1. As can be seen, the H2

loopshaping corresponds to bigger sensitivity at low frequencies, compensated by a
lower complementary sensitivity at higher frequencies. Overall the H∞ closed loop
transfer function Gc has larger bandwidth than the H2 design, and a higher static
gain. Correspondingly, the step response of the close loop system is prompter for
the H∞ than for the H2 design.
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Figure 1: H2 (green) and H∞ (blue) design of Ex. 3.

4. (a) Consider the transfer function in Eq. (3) of the text. Since tanh(v) ≤ v for all v ≥ 0
(and tanh(v) ≥ v for all v ≤ 0), the nonlinearity has unit gain: ‖ tanh(v)‖ = 1.
Hence for the small gain theorem, ‖KG‖∞ ‖ tanh(v)‖ < 1 simply means K‖G‖∞ <
1. Since ‖G‖∞ = 0.2193 (i.e. −13.1805 dB), it must be K < 4.5606.

(b) The circle associated to tanh(v) has k1 = 0 and k2 = 1, hence it has an infinite
radius and it is passing through −1, i.e., the region to avoid is the half plane to
the left of −1, see blue area in Fig. 2(a). For the circle criterion to be satisfied, the
“loop gain” KG(iω) must be to the right of this region. The Nyquist curve of G(iω)
is also shown in green in Fig. 2(a). Computing the rightmost value of G(iω) (i.e.,
η = minω(Real(G(iω))), this value is η = 0.1667, meaning that if K < 1/η = 6
the circle criterion is satisfied, see red curve in Fig. 2(a). As expected, the circle
criterion is less conservative than the small gain theorem.

(c) The transfer function of Eq. (4) is the minimum phase version of the one in Eq. (3).
Hence the two have the same ‖G‖∞ = 0.2193 (minimum and nonminimum phase
TF have the same amplitude), meaning that the small gain condition on K is the
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(a) (b)

Figure 2: Ex. 4. (a): Nyquist curve for G(s) and KG(s) in Eq. (3) of the text. (b): Nyquist
curve for G(s) and KG(s) in Eq. (4).

same. From the Nyquist plot of the new TF, shown in Fig. 2(b) in green, it can be
observed that the amplitude margin is ∞ (the Nyquist curve is all in the RHP),
meaning that the closed loop system is stable for allK > 0 (the “loop gain” KG(iω)
remains in the LHP for all K > 0).

(d) As already mentioned, the TF of Eq. (4) is the minimum phase version of the one
in Eq. (3). Nonminimum phase systems are more stability-critical, and this is just
one example of such criticality.

5. (a) (i) The Jacobian linearization is

A =

[
−2 0
0 0

]
which has eigenvalues λ1 = −2 and λ2 = 0, hence it is an undecidable case.

(ii) V (x) > 0 (p.d.) and

V̇ (x) = −4x21(1 + 2x21)− 4x42 < 0

hence this can be used.

(iii) V (x) is not a p.d. function: V (x̄) = 0 when x̄ =

[
x1
0

]
, hence this cannot be

used.

(iv) If P =

[
1 0
0 1

]
, then we get the V (x) = x21 + x22 used in (ii), hence this is OK.

(v) V (x) = x21 + x22 is radially unbounded, hence the asymptotic stability of the
origin is global.

(b) The Jacobian linearization is now

A =

[
−2 1
0 −2

]
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which has eigenvalue λ = −2 of multiplicity 2, meaning that local asymptotic
stability holds. Also in this case asymptotic stability is global: choosing V (s) =
x21 + x22, one gets

V̇ (x) = −4x21+2x1x2−8x41−4x22−4x42 = −(x1−x2)2−(3x21+3x22+8x41+4x42) < 0

The matrix A is already in Jordan normal form, meaning that the linearization
has a single eigenvector. A sketch of the phase portrait is shown in Fig. 3.
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Figure 3: Phase portrait of the system of Ex. 5.
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