
Solution for TSRT09 Control Theory, 2022-08-23

1. (a) An unstable pole gives a lower bound on the bandwidth of the closed loop system,
while instead an unstable zero gives an upper bound on the bandwidth. When the
zero is to the left of the pole then the two bounds are not compatible and it is
difficult to obtain good performances (and sometimes even stability) for the closed
loop system.

(b) A white noise has a constant spectrum: Φu(ω) = Φ0. Hence for the transfer
function G(s) = 3

s+5 , it is Φy = |G(iω)|2Φu(ω) = 9Φo
ω2+25

.

(c) The sensitivity function can be written as S = 1
1+GFy

. For our case it must be
S → 1(= 0 dB) when ω → ∞. Only the Bode diagram (b) satisfies this property.
Furthermore, the system satisfies the conditions for the Bode integral theorem,
hence the Bode diagram has to have equal area above and below 0 (the system is
stable). Only the Bode diagram (b) satisfies to this property.

(d) It is enough to choose u = −x1 − x3
2 + r. In fact this gives

ẏ = ẋ1 = −x1 + r = −y + r

The associated zero dynamics is

ẋ2 = −x2 − x1 − x3
2 + r

2. (a) It can be checked that both regulators Fy,1 and Fy,2 give a stable closed loop, as
well as internal stability. Computing RGA of G at any frequency ω it is

RGA(G(iω)) =

[
−1 2
2 −1

]
which suggests that the coupling u1 ↔ y2 and u2 ↔ y1 should be used. Hence
the regulator Fy,2 is the one achieving the best performances from a decoupling
perspective. In addition, one can compute the sensitivity function of the closed
loop for the two Fy,i, see Fig. 1, and observe that both S and Su have a better low
frequency behavior for Fy,2: the largest singular value is lower in both S and Su.
Putting everything together Fy,2 is the best controller in this case.

(b) See Fig. 1.

(c) The singular values of S are given by the square roots of the eigenvalues of S. At
w = 0.1 rad/sec, for Fy,1 their product is 0.7708 and idem for the product of the
singular values of Su, while for Fy,2 the product is 0.6913 for both S and Su.
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Figure 1: Singular values of S and Su for the two regulators Fy,1 (left) and Fy,2 (right).

(d) From SG = GSu, when G, S and Su are square and for each frequency ω at which
G(iω) is invertible, it is S = GSuG

−1, i.e., S and Su are related by a similarity
transformation, which preserves the eigenvalues. Therefore also the singular values
of S and Su are the same, and so is their product. This is also rather evident from
Fig. 1.

3. (a) Consider the closed loop system:

ẋ1 = x2

ẋ2 = −x2 −Kx1 −K3x3
1

Equilibrium points must obey to ẋ1 = ẋ2 = 0. This leads to x2 = 0 and
Kx1 (1 +K2x2

1)︸ ︷︷ ︸
>0

= 0, which implies x1 = 0. Hence the origin x = 0 is the only

equilibrium point. The linearization at 0 of the closed loop system gives the matrix[
0 1
−K −1

]
of eigenvalues

λ1,2 =
−1±

√
1− 4K

2
Concerning stability and character of the equilibrium, we have the following cases:
• for K < 0 (i.e., positive feedback), the equilibrium x = 0 is saddle point, hence

unstable;
• for 0 < K < 1/4, the equilibrium x = 0 is a stable node;
• for K = 1/4, the equilibrium is a stable node with two identical eigenvalues

(equal to -1/2). The associated Jordan form is

J =

[
−1/2 1

0 −1/2

]
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meaning that there is only 1 eigenvector;
• for K > 1/4, the equilibrium x = 0 is a stable focus.

(b) Differentiating V along the trajectories of the system, one gets

V̇ = 2ax1x2 + 4bx3
1x2 + 2cx2(−Kx1 −K3x3

1 − x2)

If one chooses
c > 0, a = cK, b = cK3/2

then V̇ = −2cx2
2 ≤ 0. Hence the system is at least stable. To show asymptotic

stability, notice that the trajectories of the closed loop system staying on the level
surfaces of the Lyapunov function (i.e., those for which V̇ = 0) have to obey
x2 = 0 ∀ t, which implies x1 = 0 ∀ t (since, as already mentioned, 1 + K2x2

1 > 0
always). Hence the only trajectory living in the level surface is x = 0, which
proves asymptotic stability. Since the origin is the only equilibrium point, stability
is global.

4. The constraints can be satisfied by giving different weights to the states and inputs in
a LQ design. For instance, choosing

Q1 =

200 0 0
0 10 0
0 0 0

 and Q2 = 1

the LQ design L=lqr(A,B,Q1,Q2) gives

L =
[
7.0671 2.7569 0.4649

]
The evolution of the closed loop system ẋ = (A − BL)x from x(0) is shown in Fig.2.
All constraints are satisfied.

5. (a) The describing function Yf (C) for the ideal relay is given in Example 14.1 of the
book, and it is always real. Since r = 0, the linear part of the system can be
written as

G̃(S) = G(S)F (S) =
K(τs+ 1)

τs(s+ 2)(s+ 3)

whose Nyquist curve is given in Fig. 3 for K = 1 and K = 9.42 (red curves).
Regardless of the value of K, there is always an intersection between −1/Yf (C) =
−πC

4 and G̃(iω), see Fig. 3.
(b) The frequency of the oscillations can be obtained by computing the value of ω for

which G̃(iω) is real (since −1/Yf (C) is real). Doing the calculations:

G̃(iω) =
10K(iω/10 + 1)

iω(iω + 2)(iω + 3)
=

10K
(
−5ω + 0.1ω(6− ω2)− i(6− 0.5ω2)

)
ω(25ω2 + (6− ω2)2)
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Figure 2: Simulation of the system of Ex. 4. From top to bottom: x1, x2, x3 and u. The
constraints are shown in red.

Figure 3: Ex. 5: Describing function − 1
Yf (C) (blue) and Nyquist curve of the loop gain G̃(iω)

(red) for two values of K. The green dot in the right panel corresponds to −1/Yf (2).

This expression is real when the imaginary term vanishes, i.e., for ω̄ = 2
√

3. The
frequency does not change with K.

(c) Since −1/Yf (C) grows by moving from right to left, as in Fig. 14.9(a) of the book,
the oscillations are stable.

(d) An amplitude of C = 2 of the oscillation corresponds to − 1
Yf (2) = −1.5708. At

ω̄ = 2
√

3, compute the real part of G̃: G̃(iω̄) = −5.6K
33.6 . Hence it must be K ≤

9.4248, see right panel in Fig. 3.
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