
Solution for TSRT09 Control Theory, 2022-06-08

1. (a) A system is controllable if all its poles can be allocated arbitrarily by a state
feedback; it is stabilizable if all its unstable poles (but not necessarily the stable
ones) can be allocated arbitrarily by state feedback. The PBH test can be used for
checking both properties.

(b) The case p > z is the most difficult, as according to eq. (7.31) and (7.35) in
the course book, the cross-over frequency (and hence the bandwidth of the closed
loop system) must be less than z and larger than p. When p > z, this results in
poor behavior for the sensitivity function and for the complementary sensitivity
function.

(c) The transfer function (iii) has poles in −0.2±i3.995 meaning that it has a resonance
peak around 4 rad/sec.

(d) Let G(s) = 1
s+2 and Gd(s) = 2

s+3 . For perfect disturbance cancellation it must be
u = −G−1Gdv. If the disturbance is sinusoidal, v(t) = 2 sin(3t), also u becomes
sinusoidal, with a gain factor of |G−1(i3)Gd(i3)|. We then get the constraint u0 ≥
|G−1(i3)Gd(i3)|2 = 2

3

√
26 ≈ 3.40.

2. (a) The transfer function of the system is

G(s) = C(sI −A)−1B =

[
2s+3

(s+2)(s+1)
1

s+2
1

s+2
2s+5

(s+2)(s+3)

]

meaning that the pole polynomial is p(s) = (s + 1)(s + 2)(s + 3). The poles are
−1, −2, −3, and the zero is −2.

(b) ‖G‖∞ = 1.7676 (or 4.94 dB).

(c) The RGA at 0 frequency is

RGA(G(0)) = G(0)� (G−1(0))T =

[
1.2500 −0.2500
−0.2500 1.2500

]
(d) The sensitivity function is

S(iω) = (I +GF )−1

=
1

s3 + 86s2 + 1531s+ 2686

[
s3 + 46s2 + 151s+ 106 −20s2 − 80s− 60
−20s2 − 80s− 60 s3 + 46s2 + 191s+ 186

]
(e) S is the transfer function from disturbance w to control error (here equal to −y),

hence looking at the singular values of S, shown in Figure 1, one can see that the
gain from w to control error is < −20dB for ω < 1 rad/sec.
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Figure 1: Singular values for S in Exercise 2.

(f) The disturbance is constant, hence we have to look at ω = 0. Computing the “best”
ratio w1/w2 corresponds to computing the eigenvector of the largest singular value
of S(0) (i.e., eigenvalue of

√
S∗(0)S(0)). Since σ(S(0)) = {0.0275, 0.0812}, we

have to look for the eigenvector associated to 0.0812, which is w = [−0.4719 0.8817]T ,
meaning that the sought ratio is w1/w2 = −0.5352.

3. Let

A =

[
−1 1
0 −1

]
, N =

[
0
1

]
, C =

[
1 0

]
, R =

[
R1 0
0 R2

]
=

[
48 0
0 1

]
(a) When the observer gain is K1 =

[
2 1

]T , denoting x̂1 the state observer, then

˙̂x1 = (A−K1C)x̂1 +K1y

and the eigenvalues of A−K1C are both equal to -2.
(b) If x̃1 = x− x̂1, the estimation error ODE is

˙̃x1 = (A−K1C)x̃1 +
[
N −K1

] [v1
v2

]
The associated covariance matrix P1 = Ex̃1x̃

T
1 can be obtained by solving a Lya-

punov equation (in matlab: P1=lyap(A-K1*C, [N -K1]*R*[N’; -K1’]):

P1 =

[
2.2812 4.8438
4.8438 19.6562

]
(c) The Kalman filter (here denoted K2, of error covariance P2) can be computed in

matlab using [K2 P2,pole2]=lqe(A,N,C,R1,R2,0), which gives

K2 =

[
2
4

]
, P2 =

[
2 4
4 16

]
and poles = −2± 1.732i
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(d) The variance of the estimation error, Σi = E[x̃Ti x̃i], is nothing but the trace of Pi,
hence

Σ1 = trace(P1) = 21.9375 > Σ2 = trace(P2) = 18

as expected.

4. (a) From Chapter 14 in the book, the describing function for the relay with hysteresis
is

Yf (C) =
4

πC

(√
1− 1

4C2
− i

2C

)
, C ≥ 0.5

−1/Yf (C) = −πC
4

√
1− 1

4C2
− iπ

8
.

The frequency function for the system is

G(iω) =
10

iω(1 + iω)
=
−10(ω + i)

ω(ω2 + 1)
.

The intersection is obtained by solving the system of equations (in ω and C):
G(iω) = −1/Yf (C);

Imaginary part:
10

ω(ω2 + 1)
=
π

8

Real part:
10

ω2 + 1
=
π

8

√
4C2 − 1.

The solution is ωo = 2.8288 and Co = 1.5002. This can be checked also graphically,
see Fig. 2.

(b) The curve − 1
Yf (C) grows moving from right to left.

C < Co =⇒ −1/Yf (C) is encircled by G(iω) =⇒ oscillation grows
C > Co =⇒ −1/Yf (C) is not encircled by G(iω) =⇒ oscillation decreases

Summing up: the oscillation is stable in amplitude.

5. (a) Choosing state space variables x1 =
∫
e and x2 = y, together with u = sat(x1 + e)

and e = −y (since r = 0), one gets the nonlinear state space model

ẋ1 = −x2
ẋ2 = sat(x1 − x2)
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Figure 2: Exercise 4. In red: G(iω), in blue − 1
Yf (C) . Solid blue point: intersection.

which corresponds to a system switching between 3 different right hand sides in 3
different regions of the state space:

A: for |x1 − x2| ≤ 1, it is

ẋ = Ax, A =

[
0 −1
1 −1

]
B: for x1 − x2 < −1 (i.e., x2 > x1 + 1) it is

ẋ1 = −x2
ẋ2 = −1

C: for x1 − x2 > 1 (i.e., x2 < x1 − 1) it is

ẋ1 = −x2
ẋ2 = 1

Only the first region admits an equilibrium point corresponding to x = 0. Since
the eigenvalues of A are −1

2 ± i
√
3
2 , the equilibrium point is a stable focus.

Phase portrait:

A: The trajectories spiral down to the origin;
B: It is ẋ1

ẋ2
= dx1

dx2
= x2, whose solution x1 = 1

2x
2
2 + c is a parabola. Furthermore,

x2 keeps decreasing, while x1 increases for x2 < 0 and decreases otherwise;
C: The solution in this case is x1 = −1

2x
2
2 + c, and x2 keeps growing, while x1

decreases if x2 > 0 and increases otherwise.

The overall phase portrait can be seen in Fig. 3(a).

(b) Similarly to part (a), there are 3 regions divided by the lines x1 − x2 = −1 and
x1 − x2 = 1, and characterized by the 3 systems

A: for |x1 − x2| ≤ 1, same as before
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Figure 3: Phase portraits for Exercise 5.

B: for x1 − x2 < −1

ẋ1 = 0

ẋ2 = −1

C: for x1 − x2 > 1

ẋ1 = 0

ẋ2 = 1

The new phase portrait is in Figure 3(b).
To show chattering behavior, let us look at what happens as the trajectories cross
the dividing lines. Let us consider first x1 − x2 = −1, for x1 > 0 (and x2 > 1). A
trajectory coming from the region A has ẋ1 = −x2 < −1 and ẋ2 = x1 − x2 = −1,
which implies that it is pushed out of the region A towards B. But then in B
the system becomes ẋ1 = 0 and ẋ2 = −1 i.e., the trajectory is forced back into
A. This is a chattering behavior: the value of ẋ1 switches very quickly between
0 and −x2 < −1. Something similar does not happen when x1 < 0 (and x2 < 1)
where instead the trajectories enter from B to A and continue in A afterwards,
see Figure 3(b).
A specular behavior occurs in the other dividing line x1 − x2 = 1.
Overall, chattering occurs on the blue lines shown in Figure 3(b). What happens in
practice in a simulator is that the trajectory slides along the blue line towards the
origin until it reaches the vertical axis. After that it enters the region A definitively
and spirals towards the origin.
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