
Solution for TSRT09 Control Theory, 2022-03-25

1. (a) See Chapter 12 of the book.

(b) For G(s):

i) The pole polynomial is p(s) = (s+ 1)(s+ 3)2(s+ 5).
ii) The 2 singular values are given in the following plot:
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iii) From

RGA(G(0)) =

[
1.0385 −0.0385
−0.0385 1.0385

]
the pairing is y1 ↔ u1 and y2 ↔ u2.

iv) Since the order of the pole polynomial is 4, that is also the dimension of a
minimal state space realization:

A =


−1 0 0 0
0 −3 0 0
0 0 −3 0
0 0 0 −5

 , B =


2 0
1 0
0 1
0 2

 , C =

[
2 0 1 0
0 1 0 1.5

]
, D =

[
1 0
0 0

]

Since (A, B) is controllable, it is also stabilizable. Since (A, C) is observable,
it is also detectable.

2. (a) The extended system is

Ge =


0 Wu

0 WTG
WS WSG
1 G

 =


0 0.1

0 10(s+2)(s+1)
(s+0.1)(s+20)2

1
s+1

1
(s+0.1)(s+20)

1 s+1
(s+0.1)(s+20)


Using the function hinfsyn in matlab, an H∞ controller can be designed, with the
function call

[Fy_pos,CL,GAMMA,INFO] = hinfsyn(Ge, 1,1)
Fy = - Fy_pos

The optimal H∞ regulator corresponds to the transfer function
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Fy =
34.19s3 + 1371s2 + 1.381 · 104s+ 1368

s4 + 113.9s3 + 1038s2 + 2406s+ 1481

and γ = 0.7568. S(iω), T (iω) and Wu(iω) are shown in Fig. 1, together with the
corresponding bounds γW−1

∗ (ω). Only S(iω) is critical in this H∞ design.
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Figure 1: Exercise 2: H∞ design. In blue are S, T , and Gwu. In red are γW−1
S (ω), γW−1

T (ω),
γW−1

u (ω).

(b) The sensitivity S at low frequencies can be decreased in many ways, for instance
increasing the gain in WS or moving the pole of WS to lower frequency. Fig. 2
shows the H∞ design for the following choices of WS :

Fig. 2 left panel: WS =
10

s+ 1
Fig. 2 right panel: WS =

1

s+ 0.1
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Figure 2: Exercise 2: H∞ design with improved S.
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3. (a) When the input is a constant u = u0 > 0 the system is

ẋ1 = −x2
1 + x2

ẋ2 = −x2 + u0

To find the equilibria in x1 > 0, x2 > 0, put ẋ = 0 and solve the equations. This
gives that

x̄ =

[√
u0

u0

]
, ū = u0

is the only admissible equilibrium point (in R2
≥0). The linearization at (x̄, ū) is

A =
∂f

∂x
(x̄, u0) =

[
−2x1 1

0 −1

]∣∣∣∣
(x̄, ū)

=

[
−2
√
u0 1

0 −1

]
, B =

∂f

∂u
(x̄, u0) =

[
0
1

]
The associated linear system is

ż = Az +Bu where z = x− x̄

This system has eigenvalues λ1 = −2
√
u0 and λ2 = −1, with associated eigenvec-

tors

v1 =

[
1
0

]
, v2 =

[
1

2
√
u0 − 1

]
meaning that the equilibrium (x̄, u0) is a stable node with two distinct eigenvectors
when u0 6= 1/4. When instead u0 = 1/4, then λ1 = λ2 = −1, and the Jacobian
linearization is

A =

[
−1 1
0 −1

]
which is already in Jordan form: it has one block of dimension 2, meaning that
there is only 1 eigenvector in this case, equal to v1. The original nonlinear system
also has a stable node at (x̄, u0), with local phase portrait that depends on the
value of u0 (which “rotates” v2).

(b) Choosing u0 = 1 then one can sketch a phase portrait for the original system near
the equilibrium point by looking at the direction of the two eigenvectors, which
now are

v1 =

[
1
0

]
, v2 =

[
1
1

]
These are drawn in red in Fig. 3. Since λ1 = −2 < λ2 = −1, v1 is the “fast”
direction and v2 is the “slow” one (trajectories are aligned with v2 near x̄). Some
other information can be added by looking at dx2/dx1:

dx2

dx1
=
ẋ2

ẋ1
=
−x2 + 1

−x2
1 + x2

⇒ dx2

dx1
→

{
0 if x2 = 1 (horizontal line)
−1 if x1 is fixed and x2 →∞

and some more can be obtained by simulating the system from different initial
conditions, see Fig. 3.
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Figure 3: Exercise 3: phase portrait for u0 = 1. The red lines are the eigenvectors directions
around x̄.

4. (a) From Chapter 14 in the book, the describing function for the relay with deadzone
is the real function

Yf (C) =
4

πC

√
1− 1

C2
, C > 1

i.e.,

−1/Yf (C) = −πC
4

√
C2

C2 − 1
C > 1

and is shown in Fig. 4 (top left panel).

Figure 4: Exercise 4. Top left panel: −1/Yf (C) versus C. The two stars are the intersection
points for G2(iω). Remaining panels: −1/Yf (C) and Gi(iω), i = 1, 2, 3. In red: G(iω), in
blue − 1

Yf (C) .
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Drawing the Nyquist plots of the 3 TF (see remaining panels in Fig. 4), one can see
that only G2(iω) intersects −1/Yf (C), hence only G2(iω) can admit self-sustained
oscillations.

(b) From the shape of −1/Yf (C) in the top left panel of Fig. 4, there must be 2
intersections. In fact, the curve −1/Yf (C) in the complex plane first moves right
along the real axis and then moves left when C grows, and its starting point when
C is very close to 1 is arbitrarily to the left (C = 1 is a singularity, in which
−1/Yf (C) = −∞). (You might [and should!] remember this from Lab 3 where
something similar was computed...). From Fig. 14.9 in the book, one oscillation is
stable in amplitude, the other unstable.
Even though it is not requested by the exercise, the intersection points are

ω = 2, C1 = 1.0081, C2 = 7.8936

and are shown as stars in the top left panel of Fig. 4. They correspond to G2(i2) =
−1/Yf (Cj) = 6.25.

5. (a) Differentiating the output: ẏ = ẋ1 = x2, ÿ = ẋ2 = sinx3 + u, i.e., the relative
degree is ν = 2.

(b) Choosing u = − sinx3 − ax1 − bx2 + r we obtain

ẋ1 = x2

ẋ2 = r − ax1 − bx2

ẋ3 = x3
1 + x2 + x3

y = x1

which gives a linear relationship between r and y (involving only x1 and x2, not x3),
with transfer function G(s) = 1

s2+bs+a
, and poles that can be placed arbitrarily.

Choosing a = b = 1 we obtain the desired transfer function. Hence the sought
regulator is u = − sinx3 − x1 − x2 + r.

(c) The system with this regulator has a zero dynamics given by ẋ3 = x3, which is
unstable.

(d) Let us compute for which values of α, β, γ we get a relative degree equal to ν = 3.
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Differentiating the output ȳ = h(x)

˙̄y = αẋ1 + βẋ2 + γẋ3

= αx2 + β sinx3 + βu+ γx3
1 + γx2 + γx3 / assume: β = 0/

= γx3
1 + (α+ γ)x2 + γx3

¨̄y = γ3x2
1ẋ1 + (α+ γ)ẋ2 + γẋ3

= γ3x2
1x2 + (α+ γ)(sinx3 + u) + γ(x3

1 + x2 + x3) / assume: α = −γ/
= γ3x2

1x2 + γ(x3
1 + x2 + x3)

...
ȳ = γ(6x1ẋ1x2 + 3x2

1ẋ2 + 3x2
1ẋ1 + ẋ2 + ẋ3)

= γ(6x1x
2
2 + (3x2

1 + 1) sinx3 + 3x2
1x2 + x3

1 + x2 + x3)︸ ︷︷ ︸
L3
fh(x)

+ γ(3x2
1 + 1)︸ ︷︷ ︸

LgL2
fh(x)

u

where we have used the notation of Lie derivative from Ch. 17 of the book. Hence
the relative degree is 3 for α = −γ, γ 6= 0, and β = 0. The change of input

u =
−L3

fh(x) + v

LgL2
fh(x)

linearizes the relationship between v and ȳ (i.e.,
...
ȳ = v), and the feedback

v = r − z1 − z2 − z3

where z1 = ȳ, z2 = ˙̄y, and z3 = ¨̄y, leads to the sought transfer function between r
and ȳ.
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