Optimal Control, Lecture 9: The Pontryagin maximum principle (PMP)

Anders Hansson

Division of Automatic Control
Linkoping University

Contents

- Optimal control problem
- Lagrangian functional and Hamiltonian
- Adjoint equations
- Pontryagin Maximum Principel (PMP)
- Sufficient conditions
- Linear Quadratic (LQ) control
- Euler Lagrange Equations
- Conservative Mechanical Systems
- Beltrami's identity
- Chain example

Optimal Control Problem

$$
\begin{align*}
\text { minimize } & \phi(x(T))+\int_{0}^{T} f(t, x(t), u(t)) d t \tag{1}\\
\text { subject to } & \dot{x}(t)=F(t, x(t), u(t))
\end{align*}
$$

with variables x and $u, x(0)=x_{0}$ given, and
$F: \mathbf{R} \times \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}, f: \mathbf{R} \times \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ and $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ continuously differentiable.

Assume $x \in \mathcal{C}^{n}(0, T)$ and $u \in \mathcal{C}^{m}(0, T)$

Optimal u denote by u^{\star}.

Assume that the corresponding solution x^{\star} to the differential equation is unique, and that in case u^{\star} is perturbed with a small amount, the corresponding perturbation of x^{\star} is also small.

Lagrangian Functional

Define the Lagrangian $L: \mathcal{C}^{m}(0, T) \rightarrow \mathbf{R}$ as

$$
\begin{aligned}
L[u] & =\phi(x(T))+\int_{0}^{T}(f(t, x(t), u(t)) \\
& \left.+\lambda(t)^{T}(F(t, x(t), u(t))-\dot{x}(t))\right) d t \\
& =\phi(x(T))+\int_{0}^{T}\left(H(t, x(t), u(t), \lambda(t))-\lambda(t)^{T} \dot{x}(t)\right) d t
\end{aligned}
$$

where $H: \mathbf{R} \times \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the Hamiltonian defined as

$$
H(t, x, u, \lambda(t))=f(t, x, u)+\lambda^{T} F(t, x, u)
$$

Perturbations

Make perturbation $u=u^{\star}+\delta u$ of u^{\star}, where δu is small, i.e., $\|\delta u\|<\epsilon$.

Corresponding perturbed trajectory x, which is the solution of differential equation for u differs from the original solution x^{\star} with the quantity $\delta x=x-x^{\star}$, which by our assumption is small, i.e., $\|\delta x\|$ can be made as small as we like by taking ϵ sufficiently small.

Increment of L

$$
\begin{aligned}
\Delta L[\delta u] & =L\left[u^{\star}+\delta u\right]-L\left[u^{\star}\right]=\phi\left(x^{\star}(T)+\delta x(T)\right)-\phi\left(x^{\star}(T)\right) \\
& +\int_{0}^{T}\left(H\left(t, x^{\star}(t)+\delta x(t), u^{\star}(t)+\delta u(t), \lambda(t)\right)\right. \\
& \left.-H\left(t, x^{\star}(t), u^{\star}(t), \lambda(t)\right)\right) d t \\
& \left.-\int_{0}^{T} \lambda(t)^{T} \frac{d}{d t}\left(x^{\star}(t)+\delta x(t)\right) d t+\int_{0}^{T} \lambda(t)^{T} \frac{d}{d t} x^{\star}(t)\right) d t .
\end{aligned}
$$

First Variation

From Taylor series expansion
$\delta L=\frac{\partial \phi}{\partial x^{T}} \delta x(T)+\int_{0}^{T}\left(\frac{\partial H}{\partial x^{T}} \delta x(t)+\frac{\partial H}{\partial u^{T}} \delta u(t)-\lambda(t)^{T} \frac{d \delta x(t)}{d t}\right) d t$.
which is clearly linear in $\delta u(t), \delta x(t)$, and its derivative.
The assumption on small perturbations of δu resulting in small perturbations of δx is necessary. Otherwise the remainder term does not converge to zero as $\|\delta u\| \rightarrow 0$.

Integration by parts

$$
\begin{aligned}
\delta L & =\frac{\partial \phi}{\partial x^{T}} \delta x(T)+\int_{0}^{T}\left(\frac{\partial H}{\partial x^{T}} \delta x(t)+\frac{\partial H}{\partial u^{T}} \delta u(t)+\frac{d \lambda(t)^{T}}{d t} \delta x(t)\right) d t \\
& -\left[\lambda(t)^{T} \delta x(t)\right]_{0}^{T}
\end{aligned}
$$

Since initial value $x(0)$ is given it follows that $\delta x(0)=0$, and hence

$$
\begin{aligned}
\delta L & =\left(\frac{\partial \phi}{\partial x^{T}}-\lambda(T)^{T}\right) \delta x(T) \\
& +\int_{0}^{T}\left(\frac{\partial H}{\partial x^{T}} \delta x(t)+\frac{\partial H}{\partial u^{T}} \delta u(t)+\frac{d \lambda(t)^{T}}{d t} \delta x(t)\right) d t
\end{aligned}
$$

Adjoint Equations

Let λ satisfy the adjoint equations

$$
\dot{\lambda}(t)=-\frac{\partial H\left(t, x^{\star}(t), u^{\star}(t), \lambda(t)\right)}{\partial x}, \quad \lambda(T)=\frac{\partial \phi\left(x^{\star}(T)\right)}{\partial x}
$$

This is a linear time-varying differential equation and hence it has a solution under mild conditions on H.
E.g. if $\frac{\partial f\left(t, x^{\star}(t), u^{\star}(t)\right)}{\partial x}$ and $\frac{\partial F\left(t, x^{\star}(t), u^{\star}(t)\right)}{\partial x}$ are bounded functions of t on $[0, T]$.

As a Result

$$
\delta L=\int_{0}^{T} \frac{\partial H}{\partial u^{T}} \delta u(t) d t
$$

From the du Bois-Raymond lemma it then follows that

$$
\frac{\partial H\left(t, x^{\star}(t), u^{\star}(t), \lambda(t)\right)}{\partial u^{T}}=0
$$

in order for the first variation to vanish.

Further Necessary Condition

For differentiable u^{\star} it holds that
$\frac{d H}{d t}=\frac{\partial H}{\partial t}+\frac{\partial H}{\partial x^{T}} \dot{x}^{\star}+\frac{\partial H}{\partial u^{T}} \dot{u}^{\star}+\frac{\partial H}{\partial \lambda^{T}} \dot{\lambda}=\frac{\partial H}{\partial t}+\left(\frac{\partial H}{\partial x}+\dot{\lambda}\right)^{T} F=\frac{\partial H}{\partial t}$
where all functions are evaluated for $\left(x^{\star}, u^{\star}\right)$.
It is possible to show that the result holds also for piecewise continuous u^{\star}.

In case H does not explicitly depend on t, called an autonomous optimal control problem, it holds that H is a constant independent of t.

Pontryagin Maximum Principle (PMP)

Given optimal u^{\star} and x^{\star} for (1), there exist an adjoint variable λ such that

$$
\begin{align*}
& \dot{\lambda}(t)=-\frac{\partial H\left(t, x^{\star}(t), u^{\star}(t), \lambda(t)\right)}{\partial x}, \quad \lambda(T)=\frac{\partial \phi\left(x^{\star}(T)\right)}{\partial x} \tag{2a}\\
& \frac{\partial H\left(t, x^{\star}(t), u^{\star}(t), \lambda(t)\right)}{\partial u^{T}}=0 \tag{2b}\\
& \frac{d H\left(t, x^{\star}(t), u^{\star}(t), \lambda(t)\right)}{d t}=\frac{\partial H\left(t, x^{\star}(t), u^{\star}(t), \lambda(t)\right)}{\partial t} \tag{2c}
\end{align*}
$$

Note: These necessary conditions for optimality hold for any extremum.

Sufficient Conditions for Optimality

Based on the second variation of the Lagrangian L. Let (\bar{u}, \bar{x}) and λ satisfy

$$
\begin{aligned}
& \dot{x}(t)=F(t, \bar{x}(t), \bar{u}(t)), \quad x(0)=x_{0} \\
& \dot{\lambda}(t)=-\frac{\partial H(t, \bar{x}(t), \bar{u}(t), \lambda(t))}{\partial x}, \quad \lambda(T)=\frac{\partial \phi(\bar{x}(T))}{\partial x} \\
& \frac{\partial H(t, \bar{x}(t), \bar{u}(t), \lambda(t))}{\partial u}=0 \\
& \frac{d H(t, \bar{x}(t), \bar{u}(t), \lambda(t))}{d t}=\frac{\partial H(t, \bar{x}(t), \bar{u}(t), \lambda(t))}{\partial t} \\
& \frac{d^{2} \phi(\bar{x}(T))}{d x d x^{T}} \succeq 0, \quad \frac{\partial^{2} H(t, \bar{x}(t), \bar{u}(t), \lambda(t))}{\partial z \partial z^{T}} \succeq 0 \\
& \frac{\partial^{2} H(t, \bar{x}(t), \bar{u}(t), \lambda(t))}{\partial u \partial u^{T}} \succ 0
\end{aligned}
$$

where $z=(x, u)$. Then (\bar{u}, \bar{x}) is a local minimum of (1).

Linear Quadratic (LQ) Control

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} x(T)^{T} Q_{0} x(T)+\frac{1}{2} \int_{0}^{T}\left(x(t)^{T} Q x(t)+u(t)^{T} R u(t)\right) d t \\
\text { subject to } & \dot{x}(t)=A x(t)+B u(t)
\end{array}
$$

with variables x and u for given initial value $x(0)=x_{0}$. The Hamiltonian is given by

$$
H=\frac{1}{2}\left(x^{T} Q x+u^{T} R u\right)+\lambda^{T}(A x+B u)
$$

We realize that the adjoint equations are

$$
\dot{\lambda}=-\frac{\partial H}{\partial x}=-Q x-A^{T} \lambda, \quad \lambda(T)=Q_{0} x(T)
$$

From the PMP we have that

$$
\frac{\partial H}{\partial u}=R u+B^{T} \lambda=0
$$

If we assume that $R \succ 0$, i.e., positive definite, we have that $u=-R^{-1} B^{T} \lambda$.

Two Point Boundary Value Problem

If we insert this into the differential equations for x and λ we obtain

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{\lambda}
\end{array}\right]=\left[\begin{array}{cc}
A & -B R^{-1} B^{T} \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right], \quad\left[\begin{array}{c}
x(0) \\
\lambda(T)
\end{array}\right]=\left[\begin{array}{c}
x_{0} \\
Q_{0} x(T)
\end{array}\right] .
$$

Remaining part on white board.

Riccati Equation

Let P solve

$$
\dot{P}+A^{T} P+P A+Q-P B R^{-1} B^{T} P=0
$$

with boundary condition

$$
P(T)=Q_{0}
$$

Then $\lambda(t)=P(t) x(t)$, and hence

$$
u(t)=-R^{-1} B^{T} \lambda(t)=-R^{-1} B^{T} P(t) x(t)
$$

Proof on white board.

Euler-Lagrange Equations

Consider case when $\dot{x}=F(t, x, u)=u$ Then $H=f+\lambda^{T} u$. Hence (2a-2b) become

$$
\begin{aligned}
& \dot{\lambda}=-\frac{\partial f}{\partial x} \\
& \frac{\partial f}{\partial u}+\lambda=0
\end{aligned}
$$

implying

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}}\right)-\frac{\partial f}{\partial x}=0 \tag{3}
\end{equation*}
$$

Necessary condition for an optimal x^{\star} of the problem

$$
\operatorname{minimize} \int_{0}^{T} f(t, x(t), \dot{x}(t)) d t
$$

with variable x.

Conservative Mechanical Systems

State x contains positions and angels, and \dot{x} is called generalized velocity.

Potential energy $V(x)$ and kinetic energy $T(x, \dot{x})$, where $T(x, \dot{x})=\dot{x}^{T} A(x) \dot{x}$ for some symmetric matrix $A(x)$.

Let the Lagrangian of mechanics be $f(x, \dot{x})=T(x, \dot{x})-V(x)$.
State should be an extremum of

$$
\int_{0}^{T} f(x(t), \dot{x}(t)) d t
$$

i.e. x should solve Euler-Lagrange equations

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}}\right)-\frac{\partial T}{\partial x}+\frac{\partial V}{\partial x}=0
$$

Conservative Mechanical Systems ctd.

The Hamiltonian is

$$
\begin{aligned}
H & =f+\lambda^{T} \dot{x}=T-V+\lambda^{T} \dot{x}=T-V-\frac{\partial f}{\partial \dot{x}} \dot{x} \\
& =\dot{x}^{T} A \dot{x}-V-2 \dot{x} A \dot{x}=-T-V
\end{aligned}
$$

Since the system is autonomous, the Hamiltonian should be a constant, and hence we have proven that the sum of potential and kinetic energy is constant for conservative mechanical systems.

Beltrami's Identity

Assume that f does not depend explicitly on t. From Euler-Lagrange equations

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial \dot{x}} \ddot{x}=\frac{d}{d t}\left(\frac{\partial f}{\partial \dot{x}} \dot{x}\right)
$$

where the first equality follows by assumption and the second equality by the chain rule. Hence

$$
\frac{d}{d t}\left(f-\frac{\partial f}{\partial \dot{x}} \dot{x}\right)=0
$$

from which it follows that

$$
f-\frac{\partial f}{\partial \dot{x}} \dot{x}=C
$$

where C is a constant. This is Beltrami's identity.

Chain Example

Consider a chain hanging from two given points and determine the shape by minimizing the total potential energy of the chain.

A differential piece of the chain, of length $d s$ has mass $d m=\rho d s$, where ρ is the mass density of the chain. Here $d s=\sqrt{1+\dot{x}^{2}} d t$, where $x(t)$ is the position of the differential segment.

The potential energy of segment is $g \rho x(t) d s$ and total potential energy is

$$
\int_{0}^{T} g \rho x \sqrt{1+\dot{x}^{2}} d t
$$

Minimize integral subject to $x(0)=x_{0}$ and $x(T)=x_{T}$.

Chain Example ctd.

Beltrami's identity gives

$$
g \rho x \sqrt{1+\dot{x}^{2}}-g \rho x \frac{\dot{x}^{2}}{\sqrt{1+\dot{x}^{2}}}=C
$$

We let $a=C /(g \rho)$ and obtain by multiplying with the square root

$$
x=a \sqrt{1+\dot{x}^{2}}
$$

or equivalently

$$
\left(\frac{x}{a}\right)^{2}-\dot{x}^{2}=1 .
$$

Then

$$
x(t)=a \cosh \left(\frac{t-t_{0}}{a}\right)
$$

satisfies the equation for any t_{0}. The boundary conditions give

$$
a \cosh \left(\frac{-t_{0}}{a}\right)=x_{0}, \quad a \cosh \left(\frac{T-t_{0}}{a}\right)=x_{T}
$$

from which a and t_{0} can be determined.

