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Optimal Control Problem

minimize φ (x(T )) +

∫ T

0
f (t, x(t), u(t)) dt

subject to ẋ(t) = F (t, x(t), u(t))

(1)

with variables x and u, x(0) = x0 given, and

F : R × R
n × R

m → R
n, f : R × R

n × R
m → R and φ : R

n → R

continuously differentiable.

Assume x ∈ Cn(0, T ) and u ∈ Cm(0, T )

Optimal u denote by u⋆.

Assume that the corresponding solution x⋆ to the differential

equation is unique, and that in case u⋆ is perturbed with a small

amount, the corresponding perturbation of x⋆ is also small.



Lagrangian Functional

Define the Lagrangian L : Cm(0, T ) → R as

L[u] = φ (x(T )) +

∫ T

0

(

f (t, x(t), u(t))

+ λ(t)T (F (t, x(t), u(t))− ẋ(t))
)

dt

= φ (x(T )) +

∫ T

0

(

H (t, x(t), u(t), λ(t))− λ(t)T ẋ(t)
)

dt,

where H : R×R
n ×R

m ×R
n → R is the Hamiltonian defined as

H (t, x, u, λ(t)) = f(t, x, u) + λTF (t, x, u)



Perturbations

Make perturbation u = u⋆ + δu of u⋆, where δu is small, i.e.,

‖δu‖ < ǫ.

Corresponding perturbed trajectory x, which is the solution of

differential equation for u differs from the original solution x⋆

with the quantity δx = x− x⋆, which by our assumption is small,

i.e., ‖δx‖ can be made as small as we like by taking ǫ
sufficiently small.



Increment of L

∆L[δu] = L[u⋆ + δu]− L[u⋆] = φ (x⋆(T ) + δx(T ))− φ (x⋆(T ))

+

∫ T

0

(

H (t, x⋆(t) + δx(t), u⋆(t) + δu(t), λ(t))

−H (t, x⋆(t), u⋆(t), λ(t))
)

dt

−
∫ T

0
λ(t)T

d

dt
(x⋆(t) + δx(t)) dt+

∫ T

0
λ(t)T

d

dt
x⋆(t))dt.



First Variation

From Taylor series expansion

δL =
∂φ

∂xT
δx(T )+

∫ T

0

(

∂H

∂xT
δx(t) +

∂H

∂uT
δu(t)− λ(t)T

dδx(t)

dt

)

dt.

which is clearly linear in δu(t), δx(t), and its derivative.

The assumption on small perturbations of δu resulting in small

perturbations of δx is necessary. Otherwise the remainder term

does not converge to zero as ‖δu‖ → 0.



Integration by parts

δL =
∂φ

∂xT
δx(T ) +

∫ T

0

(

∂H

∂xT
δx(t) +

∂H

∂uT
δu(t) +

dλ(t)T

dt
δx(t)

)

dt

−
[

λ(t)T δx(t)
]T

0

Since initial value x(0) is given it follows that δx(0) = 0, and

hence

δL =

(

∂φ

∂xT
− λ(T )T

)

δx(T )

+

∫ T

0

(

∂H

∂xT
δx(t) +

∂H

∂uT
δu(t) +

dλ(t)T

dt
δx(t)

)

dt



Adjoint Equations

Let λ satisfy the adjoint equations

λ̇(t) = −∂H(t, x⋆(t), u⋆(t), λ(t))

∂x
, λ(T ) =

∂φ(x⋆(T ))

∂x

This is a linear time-varying differential equation and hence it

has a solution under mild conditions on H.

E.g. if
∂f(t,x⋆(t),u⋆(t))

∂x
and

∂F (t,x⋆(t),u⋆(t))
∂x

are bounded functions

of t on [0, T ].



As a Result

δL =

∫ T

0

∂H

∂uT
δu(t)dt.

From the du Bois-Raymond lemma it then follows that

∂H(t, x⋆(t), u⋆(t), λ(t))

∂uT
= 0

in order for the first variation to vanish.



Further Necessary Condition

For differentiable u⋆ it holds that

dH

dt
=

∂H

∂t
+

∂H

∂xT
ẋ⋆+

∂H

∂uT
u̇⋆+

∂H

∂λT
λ̇ =

∂H

∂t
+

(

∂H

∂x
+ λ̇

)T

F =
∂H

∂t

where all functions are evaluated for (x⋆, u⋆).

It is possible to show that the result holds also for piecewise

continuous u⋆.

In case H does not explicitly depend on t, called an

autonomous optimal control problem, it holds that H is a

constant independent of t.



Pontryagin Maximum Principle (PMP)

Given optimal u⋆ and x⋆ for (1), there exist an adjoint variable λ
such that

λ̇(t) = −∂H(t, x⋆(t), u⋆(t), λ(t))

∂x
, λ(T ) =

∂φ(x⋆(T ))

∂x
(2a)

∂H(t, x⋆(t), u⋆(t), λ(t))

∂uT
= 0 (2b)

dH(t, x⋆(t), u⋆(t), λ(t))

dt
=

∂H(t, x⋆(t), u⋆(t), λ(t))

∂t
. (2c)

Note: These necessary conditions for optimality hold for any

extremum.



Sufficient Conditions for Optimality

Based on the second variation of the Lagrangian L. Let (ū, x̄)
and λ satisfy

ẋ(t) = F (t, x̄(t), ū(t)), x(0) = x0

λ̇(t) = −∂H(t, x̄(t), ū(t), λ(t))

∂x
, λ(T ) =

∂φ(x̄(T ))

∂x
∂H(t, x̄(t), ū(t), λ(t))

∂u
= 0

dH(t, x̄(t), ū(t), λ(t))

dt
=

∂H(t, x̄(t), ū(t), λ(t))

∂t
d2φ(x̄(T ))

dxdxT
� 0,

∂2H(t, x̄(t), ū(t), λ(t))

∂z∂zT
� 0

∂2H(t, x̄(t), ū(t), λ(t))

∂u∂uT
≻ 0

where z = (x, u). Then (ū, x̄) is a local minimum of (1).



Linear Quadratic (LQ) Control

minimize
1

2
x(T )TQ0x(T ) +

1

2

∫ T

0

(

x(t)TQx(t) + u(t)TRu(t)
)

dt

subject to ẋ(t) = Ax(t) +Bu(t)

with variables x and u for given initial value x(0) = x0. The

Hamiltonian is given by

H =
1

2

(

xTQx+ uTRu
)

+ λT (Ax+Bu).

We realize that the adjoint equations are

λ̇ = −∂H

∂x
= −Qx−ATλ, λ(T ) = Q0x(T ).

From the PMP we have that

∂H

∂u
= Ru+BTλ = 0

If we assume that R ≻ 0, i.e., positive definite, we have that

u = −R−1BTλ.



Two Point Boundary Value Problem

If we insert this into the differential equations for x and λ we

obtain

[

ẋ

λ̇

]

=

[

A −BR−1BT

−Q −AT

] [

x
λ

]

,

[

x(0)
λ(T )

]

=

[

x0
Q0x(T )

]

.

Remaining part on white board.



Riccati Equation

Let P solve

Ṗ +ATP + PA+Q− PBR−1BTP = 0

with boundary condition

P (T ) = Q0

Then λ(t) = P (t)x(t), and hence

u(t) = −R−1BTλ(t) = −R−1BTP (t)x(t)

Proof on white board.



Euler–Lagrange Equations

Consider case when ẋ = F (t, x, u) = u Then H = f + λTu.

Hence (2a–2b) become

λ̇ = −∂f

∂x
∂f

∂u
+ λ = 0,

implying
d

dt

(

∂f

∂ẋ

)

− ∂f

∂x
= 0, (3)

Necessary condition for an optimal x⋆ of the problem

minimize

∫ T

0
f (t, x(t), ẋ(t)) dt

with variable x.



Conservative Mechanical Systems

State x contains positions and angels, and ẋ is called

generalized velocity.

Potential energy V (x) and kinetic energy T (x, ẋ), where

T (x, ẋ) = ẋTA(x)ẋ for some symmetric matrix A(x).

Let the Lagrangian of mechanics be f(x, ẋ) = T (x, ẋ)− V (x).

State should be an extremum of

∫ T

0
f(x(t), ẋ(t))dt.

i.e. x should solve Euler–Lagrange equations

d

dt

(

∂T

∂ẋ

)

− ∂T

∂x
+

∂V

∂x
= 0.



Conservative Mechanical Systems ctd.

The Hamiltonian is

H = f + λT ẋ = T − V + λT ẋ = T − V − ∂f

∂ẋ
ẋ

= ẋTAẋ− V − 2ẋAẋ = −T − V

Since the system is autonomous, the Hamiltonian should be a

constant, and hence we have proven that the sum of potential

and kinetic energy is constant for conservative mechanical

systems.



Beltrami’s Identity

Assume that f does not depend explicitly on t. From

Euler-Lagrange equations

df

dt
=

∂f

∂x
ẋ+

∂f

∂ẋ
ẍ =

d

dt

(

∂f

∂ẋ
ẋ

)

,

where the first equality follows by assumption and the second

equality by the chain rule. Hence

d

dt

(

f − ∂f

∂ẋ
ẋ

)

= 0,

from which it follows that

f − ∂f

∂ẋ
ẋ = C,

where C is a constant. This is Beltrami’s identity.



Chain Example

Consider a chain hanging from two given points and determine

the shape by minimizing the total potential energy of the chain.

A differential piece of the chain, of length ds has mass

dm = ρds, where ρ is the mass density of the chain. Here

ds =
√
1 + ẋ2dt, where x(t) is the position of the differential

segment.

The potential energy of segment is gρx(t)ds and total potential

energy is
∫ T

0
gρx

√

1 + ẋ2dt,

Minimize integral subject to x(0) = x0 and x(T ) = xT .



Chain Example ctd.
Beltrami’s identity gives

gρx
√

1 + ẋ2 − gρx
ẋ2√
1 + ẋ2

= C.

We let a = C/(gρ) and obtain by multiplying with the square

root

x = a
√

1 + ẋ2

or equivalently
(x

a

)2
− ẋ2 = 1.

Then

x(t) = a cosh

(

t− t0
a

)

satisfies the equation for any t0. The boundary conditions give

a cosh

(−t0
a

)

= x0, a cosh

(

T − t0
a

)

= xT ,

from which a and t0 can be determined.


