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Functionals

Consider a normed linear space of continuously differentiable

real-valued functions defined on D = [a, b] ⊂ R, which we

denote by C(a, b).

The norm ‖ · ‖ : C(a, b) → R is defined as

‖y‖ = max
x∈D

|y(x)|+max
x∈D

|y′(x)|.

Consider real-valued functionals J defined on C(a, b), i.e.,

J : C(a, b) → R.

Example:

J [y] =

∫ b

a

f
(

x, y(x), y′(x)
)

dx (1)

for some function f : R × R × R → R.



Extrema

Define the increment ∆J : C(a, b) → R of a functional J for a

fixed y ∈ C(a, b) as

∆J [δy] = J [y + δy]− J [y].

In case

∆J [δy] = δJ [δy] + ǫ‖δy‖;

where δJ : C(a, b) → R is a linear functional and ǫ → 0 as

‖δy‖ → 0, we say that J is differentiable, and we call the

functional δJ the first variation or differential of J .

It can be shown that the differential of a differentiable functional

is unique.



Example

The functional in (1) is differentiable if f is a differentiable

function in its last two arguments. This follows from a Taylor

series expansion:

∆J [δy] =

∫ b

a

(f
(

x, y(x) + δy(x), y′(x) + δy′(x)
)

− f
(

x, y(x), y′(x)
)

)dx

=

∫ b

a

(

∂f (x, y(x), y′(x))

∂y
δy(x) +

∂f (x, y(x), y′(x))

∂y′
δy′(x)

+ h
(

y(x), y′(x)
) ∥

∥(δy(x), δy′(x))
∥

∥

2

)

dx,

where h : R × R → R is a function that goes to zero as

(δy(x), δy′(x)) → 0. The latter is implied by ‖δy‖ → 0.



Example ctd.

Define ǫ as

ǫ =

∫ b

a
h (y(x), y′(x)) ‖(δy(x), δy′(x))‖2 dx

‖δy‖

≤

∫ b

a
h (y(x), y′(x)) ‖δy‖dx

‖δy‖
=

∫ b

a

h
(

y(x), y′(x)
)

dx,

which converges to zero as h goes to zero. Hence this

functional is differentiable with first variation

δJ [δy] =

∫ b

a

(

∂f (x, y(x), y′(x))

∂y
δy(x) +

∂f (x, y(x), y′(x))

∂y′
δy′(x)

)

dx.

(2)

It is left as an exercise to show that this functional is linear, see

Exercise 7.2.



Definition of Extremum

We say that a functional J has a weak extremum at y⋆ if its

increment has the same sign for all y in a neighborhood of y⋆.1

More formally there should exist ǫ > 0 such that ∆J [δy] has the

same sign for all δy such that ‖δy‖ ≤ ǫ.

If the sign is positive we have a weak minimum and if the sign is

negative we have a weak maximum.

1In case there are constraints on y for x = a or x = b, δy should be

constrained to be zero at those values of x. This is often called that δy(x) is

admissible. We will tacitly assume that we only consider such admissible δy.



Necessary Condition for Extremum

Assume that a differentiable functional J has an extremum at

y⋆. Then the first variation vanishes, i.e., δJ [δy] = 0.

Proof: We have

∆J [δy] = δJ [δy] + ǫ‖δy‖,

where ǫ → 0 as ‖δy‖ → 0. Hence for sufficiently small ‖δy‖ the

sign of ∆J [δy] will be the same as the sign of δJ [δy]. Now

assume that δJ [δy0] 6= 0 for some δy0. Then for any α > 0 we

have

δJ [−αδy0] = −δJ [αδy0],

since δJ is linear. Hence the increment can be made to have

either sign for arbitrary small δy contradicting that J has an

extremum.



Second Variation

We say that a functional J is twice differentiable if the increment

can be written

∆J [δy] = δJ [δy] + δ2J [δy] + ǫ2‖δy‖2

where δJ is the first variation, linear in δy, δ2J is the second

variation, quadratic in δy, and ǫ → 0 as ‖δy‖ → 0.

It can be shown that also the second variation is unique.



Example

The functional in (1) is twice differentiable if f is a twice

differentiable function in its last two arguments (proof by Taylor

series expansion) The second variation is

δ2J [δy] =
1

2

∫ b

a

[

δy(x)
δy′(x)

]T
[

∂2f(x,y(x),y′(x)))
∂y2

∂2f(x,y(x),y′(x)))
∂y∂y′

∂2f(x,y(x),y′(x)))
∂y∂y′

∂2f(x,y(x),y′(x)))
∂y′2

]

×

[

δy(x)
δy′(x)

]

dx.



Second Order Conditions for Extremum

It can be proven that a necessary condition for y⋆ to be a

minimum for J is that δ2J [δy] ≥ 0 for all δy.

This is not a sufficient condition.

We say that the second variation is strongly positive if there

exists a constant k > 0 such that δ2J [δy] ≥ k‖δy‖2 for all y and

δy.

A sufficient condition for y⋆ to be optimal for J is that its first

variation vanishes and that its second variation is strongly

positive.

This is not a necessary condition.



Constrained Problem

minimize J [y] (3)

subject to K[y] = 0 (4)

with variable y ∈ C(a, b), where J and K are functionals from

C(a, b) to R and R
p, respectively.

Assume that K is affine and that J is twice differentiable with a

strongly positive second variation.



Sufficient Condition for Optimality
Define the Lagrangian functional L : C(a, b)× R

p → R as

L[y, µ] = J [y] + µTK[y].

Assume that ȳ ∈ C(a, b) and µ̄ ∈ R
p satisfies

δL[δy] = δJ [δy] + µ̄T δK[δy] = 0

K[ȳ] = 0.

It then follows that ȳ is optimal for (3–4).

Proof: By the first condition above ȳ minimizes L[y, µ̄], since L
is twice differentiable with a strongly positive second variation.

Now assume that ȳ is not optimal for the above optimization

problem, but that ỹ is optimal. Then J [ỹ] < J [ȳ] and K[ỹ] = 0
implies that

L[ỹ, µ̄] = J [ỹ] < J [ȳ],

which contradicts that ȳ minimizes L[y, µ].



Du Bois-Reymond Lemma
If y : [a, b] → R is a continuous function and

∫ b

a

y(x)h(x)dx = 0

for all h ∈ C(a, b) such that h(a) = h(b) = 0, then y(x) = 0 for all

x ∈ [a, b].

Proof: Suppose the function y is positive at some point

c ∈ [a, b]. By continuity it is also positive in some interval

[x1, x2] ⊂ [a, b]. Let

h(x) = (x− x1)(x2 − x)

for x ∈ [x1, x2] and zero otherwise. Then it follows that
∫ b

a

y(x)h(x)dx > 0

which is a contradiction. In case the function is negative at

some point a similar argument can be done. The lemma still

holds true if we do not constrain h at a and/or b.



Example
Consider the problem in (3–4) where

J [y] =

∫ b

a

f(y(x))dx

K[y] =

∫ b

a

xy(x)dx− k

for some constant k, where f(y) = y log y. We have

f ′(y) = log y + 1 and f ′′(y) = 1/y and hence from (2) and from

the examples the variations of J are

δJ [δy] =

∫ b

a

(log y(x) + 1) δy(x)dx

δ2J [δy] =
1

2

∫ b

a

1

y(x)
δy(x)2dx.

The first variation of K is δK[δy] =
∫ b

a
xδy(x)dx and the second

variation of K is zero.



Example ctd.

We define the Lagrangian as L[y, µ] = J [y] + µK[y] and its first

variation is

δL[δy] =

∫ b

a

(log y(x) + 1 + µx) δy(x)dx.

By the du-Bosi-Reymond lemma it holds that if the first variation

is zero, then

log y(x) + 1 + µx = 0,

and hence we have that y(x) = exp(−1− µx). The constraint

K[y] = 0 can be used to determine µ in terms of a, b, and k.



Generalizations

Most of what has been discussed in this section generalizes to

D ⊆ R
n.

We will also consider y(x) to be vector valued, i.e., y : D → R
n.

To this end we just define the norm as

‖y‖ = sup
x∈D

‖y(x)‖2 + sup
x∈D

‖y′(x)‖2

where ‖ · ‖2 is the Euclidean vector norm.

From now on Cn(a, b) is the normed linear space of

differentiable functions y : D → R
n with the above norm, where

D = [a, b].


