Optimal Control, Lecture 8: Calculus of Variations

Anders Hansson

Division of Automatic Control
Linkoping University

Contents

- Extremum of Functionals
- Necessary Condition for Extremum
- Sufficient Condition for Optimality
- Constrained Problem
- Du Bois-Reymond Lemma

Functionals

Consider a normed linear space of continuously differentiable real-valued functions defined on $\mathcal{D}=[a, b] \subset \mathbf{R}$, which we denote by $\mathcal{C}(a, b)$.

The norm $\|\cdot\|: \mathcal{C}(a, b) \rightarrow \mathbf{R}$ is defined as

$$
\|y\|=\max _{x \in \mathcal{D}}|y(x)|+\max _{x \in \mathcal{D}}\left|y^{\prime}(x)\right| .
$$

Consider real-valued functionals J defined on $\mathcal{C}(a, b)$, i.e., $J: \mathcal{C}(a, b) \rightarrow \mathbf{R}$.

Example:

$$
\begin{equation*}
J[y]=\int_{a}^{b} f\left(x, y(x), y^{\prime}(x)\right) d x \tag{1}
\end{equation*}
$$

for some function $f: \mathbf{R} \times \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$.

Extrema

Define the increment $\Delta J: \mathcal{C}(a, b) \rightarrow \mathbf{R}$ of a functional J for a fixed $y \in \mathcal{C}(a, b)$ as

$$
\Delta J[\delta y]=J[y+\delta y]-J[y] .
$$

In case

$$
\Delta J[\delta y]=\delta J[\delta y]+\epsilon\|\delta y\| ;
$$

where $\delta J: \mathcal{C}(a, b) \rightarrow \mathbf{R}$ is a linear functional and $\epsilon \rightarrow 0$ as $\|\delta y\| \rightarrow 0$, we say that J is differentiable, and we call the functional δJ the first variation or differential of J.

It can be shown that the differential of a differentiable functional is unique.

Example

The functional in (1) is differentiable if f is a differentiable function in its last two arguments. This follows from a Taylor series expansion:

$$
\begin{aligned}
\Delta J[\delta y] & =\int_{a}^{b}\left(f\left(x, y(x)+\delta y(x), y^{\prime}(x)+\delta y^{\prime}(x)\right)\right. \\
& \left.-f\left(x, y(x), y^{\prime}(x)\right)\right) d x \\
& =\int_{a}^{b}\left(\frac{\partial f\left(x, y(x), y^{\prime}(x)\right)}{\partial y} \delta y(x)+\frac{\partial f\left(x, y(x), y^{\prime}(x)\right)}{\partial y^{\prime}} \delta y^{\prime}(x)\right. \\
& \left.+h\left(y(x), y^{\prime}(x)\right)\left\|\left(\delta y(x), \delta y^{\prime}(x)\right)\right\|_{2}\right) d x
\end{aligned}
$$

where $h: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ is a function that goes to zero as $\left(\delta y(x), \delta y^{\prime}(x)\right) \rightarrow 0$. The latter is implied by $\|\delta y\| \rightarrow 0$.

Example ctd.

Define ϵ as

$$
\begin{aligned}
\epsilon & =\frac{\int_{a}^{b} h\left(y(x), y^{\prime}(x)\right)\left\|\left(\delta y(x), \delta y^{\prime}(x)\right)\right\|_{2} d x}{\|\delta y\|} \\
& \leq \frac{\int_{a}^{b} h\left(y(x), y^{\prime}(x)\right)\|\delta y\| d x}{\|\delta y\|}=\int_{a}^{b} h\left(y(x), y^{\prime}(x)\right) d x
\end{aligned}
$$

which converges to zero as h goes to zero. Hence this functional is differentiable with first variation

$$
\begin{equation*}
\delta J[\delta y]=\int_{a}^{b}\left(\frac{\partial f\left(x, y(x), y^{\prime}(x)\right)}{\partial y} \delta y(x)+\frac{\partial f\left(x, y(x), y^{\prime}(x)\right)}{\partial y^{\prime}} \delta y^{\prime}(x)\right) d x \tag{2}
\end{equation*}
$$

It is left as an exercise to show that this functional is linear, see Exercise 7.2.

Definition of Extremum

We say that a functional J has a weak extremum at y^{\star} if its increment has the same sign for all y in a neighborhood of y^{\star}. 1

More formally there should exist $\epsilon>0$ such that $\Delta J[\delta y]$ has the same sign for all δy such that $\|\delta y\| \leq \epsilon$.

If the sign is positive we have a weak minimum and if the sign is negative we have a weak maximum.

[^0]
Necessary Condition for Extremum

Assume that a differentiable functional J has an extremum at y^{\star}. Then the first variation vanishes, i.e., $\delta J[\delta y]=0$.
Proof: We have

$$
\Delta J[\delta y]=\delta J[\delta y]+\epsilon\|\delta y\|
$$

where $\epsilon \rightarrow 0$ as $\|\delta y\| \rightarrow 0$. Hence for sufficiently small $\|\delta y\|$ the sign of $\Delta J[\delta y]$ will be the same as the sign of $\delta J[\delta y]$. Now assume that $\delta J\left[\delta y_{0}\right] \neq 0$ for some δy_{0}. Then for any $\alpha>0$ we have

$$
\delta J\left[-\alpha \delta y_{0}\right]=-\delta J\left[\alpha \delta y_{0}\right],
$$

since δJ is linear. Hence the increment can be made to have either sign for arbitrary small δy contradicting that J has an extremum.

Second Variation

We say that a functional J is twice differentiable if the increment can be written

$$
\Delta J[\delta y]=\delta J[\delta y]+\delta^{2} J[\delta y]+\epsilon^{2}\|\delta y\|^{2}
$$

where δJ is the first variation, linear in $\delta y, \delta^{2} J$ is the second variation, quadratic in δy, and $\epsilon \rightarrow 0$ as $\|\delta y\| \rightarrow 0$.

It can be shown that also the second variation is unique.

Example

The functional in (1) is twice differentiable if f is a twice differentiable function in its last two arguments (proof by Taylor series expansion) The second variation is

$$
\begin{aligned}
\delta^{2} J[\delta y]=\frac{1}{2} \int_{a}^{b}\left[\begin{array}{c}
\delta y(x) \\
\delta y^{\prime}(x)
\end{array}\right]^{T} & {\left[\begin{array}{ll}
\frac{\left.\partial^{2} f\left(x, y(x), y^{\prime}(x)\right)\right)}{\partial y^{2}} & \frac{\left.\partial^{2} f\left(x, y(x), y^{\prime}(x)\right)\right)}{\partial y \partial y^{\prime}} \\
\frac{\left.\partial^{2} f\left(x, y(x), y^{\prime}(x)\right)\right)}{\partial y \partial y^{\prime}} & \frac{\left.\partial^{2} f\left(x, y(x), y^{\prime}(x)\right)\right)}{\partial y^{\prime 2}}
\end{array}\right] } \\
& \times\left[\begin{array}{c}
\delta y(x) \\
\delta y^{\prime}(x)
\end{array}\right] d x
\end{aligned}
$$

Second Order Conditions for Extremum

It can be proven that a necessary condition for y^{\star} to be a minimum for J is that $\delta^{2} J[\delta y] \geq 0$ for all δy.

This is not a sufficient condition.

We say that the second variation is strongly positive if there exists a constant $k>0$ such that $\delta^{2} J[\delta y] \geq k\|\delta y\|^{2}$ for all y and δy.

A sufficient condition for y^{\star} to be optimal for J is that its first variation vanishes and that its second variation is strongly positive.

This is not a necessary condition.

Constrained Problem

$$
\begin{array}{cl}
\operatorname{minimize} & J[y] \\
\text { subject to } & K[y]=0 \tag{4}
\end{array}
$$

with variable $y \in \mathcal{C}(a, b)$, where J and K are functionals from $\mathcal{C}(a, b)$ to \mathbf{R} and \mathbf{R}^{p}, respectively.

Assume that K is affine and that J is twice differentiable with a strongly positive second variation.

Sufficient Condition for Optimality

Define the Lagrangian functional $L: \mathcal{C}(a, b) \times \mathbf{R}^{p} \rightarrow \mathbf{R}$ as

$$
L[y, \mu]=J[y]+\mu^{T} K[y] .
$$

Assume that $\bar{y} \in \mathcal{C}(a, b)$ and $\bar{\mu} \in \mathbf{R}^{p}$ satisfies

$$
\begin{aligned}
\delta L[\delta y]=\delta J[\delta y]+\bar{\mu}^{T} \delta K[\delta y] & =0 \\
K[\bar{y}] & =0 .
\end{aligned}
$$

It then follows that \bar{y} is optimal for (3-4).
Proof: By the first condition above \bar{y} minimizes $L[y, \bar{\mu}]$, since L is twice differentiable with a strongly positive second variation. Now assume that \bar{y} is not optimal for the above optimization problem, but that \tilde{y} is optimal. Then $J[\tilde{y}]<J[\tilde{y}]$ and $K[\tilde{y}]=0$ implies that

$$
L[\tilde{y}, \bar{\mu}]=J[\tilde{y}]<J[\bar{y}],
$$

which contradicts that \bar{y} minimizes $L[y, \mu]$.

Du Bois-Reymond Lemma

If $y:[a, b] \rightarrow \mathbf{R}$ is a continuous function and

$$
\int_{a}^{b} y(x) h(x) d x=0
$$

for all $h \in \mathcal{C}(a, b)$ such that $h(a)=h(b)=0$, then $y(x)=0$ for all $x \in[a, b]$.

Proof: Suppose the function y is positive at some point $c \in[a, b]$. By continuity it is also positive in some interval $\left[x_{1}, x_{2}\right] \subset[a, b]$. Let

$$
h(x)=\left(x-x_{1}\right)\left(x_{2}-x\right)
$$

for $x \in\left[x_{1}, x_{2}\right]$ and zero otherwise. Then it follows that

$$
\int_{a}^{b} y(x) h(x) d x>0
$$

which is a contradiction. In case the function is negative at some point a similar argument can be done. The lemma still holds true if we do not constrain h at a and/or b.

Example

Consider the problem in (3-4) where

$$
\begin{aligned}
J[y] & =\int_{a}^{b} f(y(x)) d x \\
K[y] & =\int_{a}^{b} x y(x) d x-k
\end{aligned}
$$

for some constant k, where $f(y)=y \log y$. We have $f^{\prime}(y)=\log y+1$ and $f^{\prime \prime}(y)=1 / y$ and hence from (2) and from the examples the variations of J are

$$
\begin{aligned}
\delta J[\delta y] & =\int_{a}^{b}(\log y(x)+1) \delta y(x) d x \\
\delta^{2} J[\delta y] & =\frac{1}{2} \int_{a}^{b} \frac{1}{y(x)} \delta y(x)^{2} d x
\end{aligned}
$$

The first variation of K is $\delta K[\delta y]=\int_{a}^{b} x \delta y(x) d x$ and the second variation of K is zero.

Example ctd.

We define the Lagrangian as $L[y, \mu]=J[y]+\mu K[y]$ and its first variation is

$$
\delta L[\delta y]=\int_{a}^{b}(\log y(x)+1+\mu x) \delta y(x) d x
$$

By the du-Bosi-Reymond lemma it holds that if the first variation is zero, then

$$
\log y(x)+1+\mu x=0
$$

and hence we have that $y(x)=\exp (-1-\mu x)$. The constraint $K[y]=0$ can be used to determine μ in terms of a, b, and k.

Generalizations

Most of what has been discussed in this section generalizes to $\mathcal{D} \subseteq \mathbf{R}^{n}$.

We will also consider $y(x)$ to be vector valued, i.e., $y: \mathcal{D} \rightarrow \mathbf{R}^{n}$. To this end we just define the norm as

$$
\|y\|=\sup _{x \in \mathcal{D}}\|y(x)\|_{2}+\sup _{x \in \mathcal{D}}\left\|y^{\prime}(x)\right\|_{2}
$$

where $\|\cdot\|_{2}$ is the Euclidean vector norm.
From now on $\mathcal{C}^{n}(a, b)$ is the normed linear space of differentiable functions $y: \mathcal{D} \rightarrow \mathbf{R}^{n}$ with the above norm, where $\mathcal{D}=[a, b]$.

[^0]: ${ }^{1}$ In case there are constraints on y for $x=a$ or $x=b, \delta y$ should be constrained to be zero at those values of x. This is often called that $\delta y(x)$ is admissible. We will tacitly assume that we only consider such admissible δy.

