Optimal Control, Lecture 7: Approximation in Policy Space and Iterative Learning Control

Anders Hansson

Division of Automatic Control Linkoping University

Contents

- Approximation in policy space
- Iterative Learning Control (ILC)
- Iterative Feedback Tuning (IFT)
- Guest Lecture by Mikael Norrlöf, ABB Robotics

Approximation in Policy Space

Assume that we are given a *Q*-function, and that we would like to solve

$$\mu(x) = \underset{u}{\operatorname{argmin}} Q(x, u) \tag{1}$$

approximately. Define $\tilde{\mu}(a, u)$ using an ANN or a linear regression with *a* as parameter vector. Solve the LS problem

minimize
$$\frac{1}{2} \sum_{k=1}^{N} \|u_k - \tilde{\mu}(a, u_k)\|_2^2$$

with variable a, where u_k , $k \in \mathbb{N}_N$ are solutions to (1) for the samples $x = x_k$.

- Less optimization problems need to be solved when the policy is implemented in real-time
- Evaluating μ̃ might be done much faster than solving the optimization problem.
- This approach can be used for any policy for which we know its values for a discrete number of samples.

Iterative Learning Control (ILC)

Consider

minimize
$$\phi(x_N) + \sum_{k=0}^{N-1} f_k(x_k, u_k)$$
 (2)
subject to $x_{k+1} = F_k(x_k, u_k), \quad k \in \mathbf{Z}_{N-1}$

Define J(u) as the function defined by objective function when constraints used to substitute away x_k , i.e. J is a function of $u = (u_0, \ldots, u_{N-1})$.

Similarly consider x_k to be functions of u.

Gradient of J

Chain rule gives

$$\frac{dJ(u)}{du^T} = \frac{d\phi(x_N)}{dx_N^T} \frac{dx_N}{du^T} + \sum_{k=0}^{N-1} \frac{\partial f_k(x_k, u_k)}{\partial x_k^T} \frac{dx_k}{du^T} + \frac{\partial f_k(x_k, u_k)}{\partial u_k^T} \frac{du_k}{du^T},$$

where

$$\frac{dx_{k+1}}{du_l^T} = \frac{\partial F_k(x_k, u_k)}{\partial x_k^T} \frac{dx_k}{du_l^T} + \frac{\partial F_k(x_k, u_k)}{\partial u_k^T} \delta(k-l),$$

and where

$$\delta(k) = \begin{cases} 1, & k = 0\\ 0, & k \neq 0. \end{cases}$$

The initial value is zero. Notice that $\frac{du_k}{du^T}$ is a trivial matrix.

For the linear case when $F_k(x, u) = A_k x + B_k u$ we have

$$\frac{dx_{k+1}}{du_l^T} = A_k \frac{dx_k}{du_l^T} + B_k \delta(k-l).$$

Gradient of *J* ctd.

For the gradient one simulation or experiment has to be carried out for each value of l and each component of the control signal.

In case A_k and B_k do not depend on k

$$\frac{dx_k}{du_l^T} = \frac{dx_{k-l}}{du_0^T},$$

Hence just needs to obtain the so-called impulse response of the dynamical system.

For nonlinear F_k , assuming $F_k(0,0) = 0$,

$$\frac{dx_{k+1}}{du_{i,j}} \approx F_k\left(\frac{dx_k}{du_{i,j}}, \frac{du_k}{du_{i,j}}\right)$$

Here index i refers to stage index and index j to component index.

ILC Using Root-Finding

Consider

$$x_{k+1} = F_k(x_k, u_k)$$
$$y_k = G_k(x_k, u_k)$$

Assume $x_0 = 0$. Let $y = (y_0, y_1, ..., y_{N-1})$ and $u = (u_0, u_1, ..., u_{N-1})$. Define *H* such that

$$y = H(u).$$

Find u such that error signal ϵ defined as

$$\epsilon(u) = y - r = H(u) - r$$

is zero for given *reference value* r for y.

Root-Finding Algorithm

The following root-finding algorithm

$$u_{k+1} = u_k - t\epsilon(u_k)$$

is used.

Here sub-index k refers to iteration index.

Evaluation of ϵ can be done with simulations or with experiments on a real dynamical system.

Algorithm converges if ϵ is Lipschitz continuous with Lipschitz constant β and strongly monotone with dissipation α for $t \in (0, 2/(\alpha + \beta)]$

System Theory Interpretation of Convergence Criteria

Lipschitz constant β is *incremental gain* of the dynamical system, i.e. smallest β such that

 $||H(u) - H(v)||_2 \le \beta ||u - v||_2, \quad \forall u, v \in \mathbf{R}^{Nm}.$

The strong monotonicity condition is the same as saying that the dynamical system is *incrementally strictly passive* with dissipation α , i.e.

$$(H(u) - H(v))^T (u - v) \ge \alpha ||u - v||_2^2, \quad \forall u, v \in \mathbf{R}^{Nm}.$$

Linear System

Assume $F_k(x, u) = Ax + Bu$ and $G_k = Cx + Du$. Then *H* is a linear function and we may write y = Hu, where

$$H = \begin{bmatrix} h_0 & 0 & \cdots & 0 \\ h_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ h_{N-1} & \cdots & h_1 & h_0 \end{bmatrix},$$

where $h_0 = D$ and $h_i = CA^i B \in \mathbf{R}^m$ for $i \in \mathbb{N}$.

Convergence Criterion

Lipschitz constant is $\beta = ||H||_2$, and criterion for strong monotonicity is

$$(u-v)H^T(u-v) \ge \alpha \|u-v\|_2^2, \quad \forall u, v \in \mathbf{R}^{Nm}.$$

equivalent to

$$\frac{1}{2}x^T \left(H + H^T\right) x \ge \alpha \|x\|_2^2, \quad \forall x \in \mathbf{R}^{Nm},$$

equivalent to $\lambda_{\min} = \lambda_{\min}(H + H^T) > 2\alpha$.

If we then denote largest eigenvalue of $H^T H$ with λ_{\max} it follows that the algorithm converges for $t \in (0, 4/(\lambda_{\min} + 2\lambda_{\max})]$, assuming that $\lambda_{\min} > 0$.

Transformation of ϵ

Let T be such that $T(\epsilon) = 0$ if and only if $\epsilon = 0$, and apply the root finding algorithm to $T(\epsilon(u))$.

One possible choice is to take T as a linear function defined by an invertible matrix T, i.e. we consider Te(u) = 0.

For the linear case the matrix *H* above is replace by *TH*, and it is for this matrix we need to compute α and β .

In case we know the impulse response we may take $T = H^{-1}$ and we obtain convergence in one step with $t_k = 1$.

Also possible to use feedback in order to make H itself close to the identity matrix.

Iterative Feedback Tuning (IFT)

Consider control signal given by policy μ , i.e. $u_k = \mu(x_k, a)$, where *a* parameter that we want to learn. It should solve

minimize
$$\phi(x_N) + \sum_{k=0}^{N-1} f_k(x_k, u_k)$$
 (3)

subject to
$$x_{k+1} = F_k(x_k, u_k), \quad k \in \mathbf{Z}_{N-1}$$
 (4)

$$u_k = \mu(x_k, a), \quad k \in \mathbf{Z}_{N-1} \tag{5}$$

with variable *a* for a given initial value x_0 , where ϕ , f_k and F_k are defined as before.

Define J(a) as the function defined by (3) when (4— 5) are used to substitute away x_k and u_k . Similarly consider x_k and u_k to be functions of a.

Gradients of J

Using the chain rule

$$\frac{dJ(a)}{da^T} = \frac{d\phi(x_N)}{dx_N^T} \frac{dx_N}{da^T} + \sum_{k=0}^{N-1} \frac{\partial f_k(x_k, u_k)}{\partial x_k^T} \frac{dx_k}{da^T} + \frac{\partial f_k(x_k, u_k)}{\partial u_k^T} \frac{du_k}{da^T},$$

where

$$\frac{dx_{k+1}}{da^T} = \frac{\partial F(x_k, u_k)}{\partial x_k^T} \frac{dx_k}{da^T} + \frac{\partial F(x_k, u_k)}{\partial u_k^T} \frac{du_k}{da^T}$$
$$\frac{du_k}{da^T} = \frac{\partial \mu(x_k, a)}{\partial x_k^T} \frac{dx_k}{da^T} + \frac{\partial \mu(x_k, a)}{\partial a^T}.$$

The initial value is zero.

Linear System

Let $F_k(x, u) = A_k x + B_k u$, and let $\mu(x, a) = Lx$, where $L \in \mathbf{R}^{m \times n}$ with $a^T = \begin{bmatrix} L_1 & \cdots & L_m \end{bmatrix}$, where L_i are the rows of L, we have

$$\frac{dx_{k+1}}{da^T} = A_k \frac{dx_k}{da^T} + B_k \frac{du_k}{da^T}$$
$$\frac{du_k}{da^T} = L \frac{dx_k}{da^T} + \text{bdiag}(x_k^T).$$

Derivatives are obtained by simulation of closed loop system or from experiments involving closed loop system with current x_k as an additional input.