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Approximation in Policy Space
Assume that we are given a Q-function, and that we would like
to solve
p(x) = argmin Q(z, u) )

u

approximately. Define ji(a, ) using an ANN or a linear
regression with a as parameter vector. Solve the LS problem

minimize = Z g — fila, ur)||3

with variable a, where u;, k € Ny are solutions to (1) for the
samples x = xy.
> Less optimization problems need to be solved when the
policy is implemented in real-time
» Evaluating z» might be done much faster than solving the
optimization problem.
» This approach can be used for any policy for which we
know its values for a discrete number of samples.



lterative Learning Control (ILC)

Consider

N-1

minimize ¢(zy) + Z fu(@, ug) (2)
k=0

subject to 11 = Fi(xg,ug), k€ Zn—1

Define J(u) as the function defined by objective function when
constraints used to substitute away x, i.e. J is a function of

u=(Uug,...,UN—1)-

Similarly consider x;, to be functions of w.



Gradient of J

Chain rule gives

dJ(u) _ do(zy) dz gy Ofk(zp,ug) deg,  Ofx(xk, ur) dug

duT dxjj\} duT kzo 8:6% duT Bug duT’
where
drgr1r  OF(wp,ui) doy,  OFy(vk, ug)
T — T T T o(k —1),
duj Oy, du; Ouy,

and where

1, k=0
6(k) =19

0, k#0.

The initial value is zero. Notice that fz%" is a trivial matrix.

For the linear case when Fy(z,u) = Agx + Biu we have

dxpiq
dugp

dzy,

du;[

= A% 4 Bro(k —1).



Gradient of J ctd.

For the gradient one simulation or experiment has to be carried
out for each value of I and each component of the control
signal.

In case A, and By do not depend on k

dxy, drp_;
T - T
du; duy

Hence just needs to obtain the so-called impulse response of
the dynamical system.

For nonlinear Fj, assuming F(0,0) = 0,
dxgiq ~ F < dry dug ) .

’
du; du; ;- du;

Here index i refers to stage index and index j to component
index.



ILC Using Root-Finding

Consider

T = Fr(vp, ug)
yr = Gr(ag, uk)

Assume zy = 0. Let y = (yo0,91,...,yn—1) and
u = (ug,u1,...,uny—1). Define H such that

y = H(u).
Find u» such that error signal € defined as
e(u)y=y—r=H(u)—r

is zero for given reference value r for y.



Root-Finding Algorithm

The following root-finding algorithm
Upr1 = u — te(ug)
is used.

Here sub-index k refers to iteration index.

Evaluation of e can be done with simulations or with
experiments on a real dynamical system.

Algorithm converges if € is Lipschitz continuous with Lipschitz
constant 5 and strongly monotone with dissipation « for
t€(0,2/(a+p)]



System Theory Interpretation of Convergence Criteria

Lipschitz constant 3 is incremental gain of the dynamical
system, i.e. smallest g such that

1H (u) = H(v)l2 < Bllu—v[l2, Vu,v e RY™

The strong monotonicity condition is the same as saying that
the dynamical system is incrementally strictly passive with
dissipation «, i.e.

(H(u) — Hw)) (u —v) > allu—v|3, Yu,veRN™,



Linear System

Assume Fj(z,u) = Az + Buand G, = Cx + Du. Then H is a
linear function and we may write y = Hu, where

he 0 --- 0
H= h_1 R
: .0
hn-1 -+ hi ho

where hy = D and h; = CA'B € R™ for i € N.



Convergence Criterion

Lipschitz constant is 3 = || H||2, and criterion for strong
monotonicity is

(u—v)H (u—v) > allu—v|3, Yu,veRV™

equivalent to

1
§xT (H+H")z > a|z|3, VYaeRY™,

equivalent to A\pin = A\min(H + HT) > 2a.
If we then denote largest eigenvalue of H” H with A,y it

follows that the algorithm converges for
t € (0,4/(Amin + 2Amax)], @assuming that Ay, > 0.



Transformation of ¢

Let 7" be such that T'(e) = 0 if and only if e = 0, and apply the
root finding algorithm to T'(e(u)).

One possible choice is to take T" as a linear function defined by
an invertible matrix 7', i.e. we consider T'e(u) = 0.

For the linear case the matrix H above is replace by TH, and it
is for this matrix we need to compute « and £.

In case we know the impulse response we may take 7' = H~!
and we obtain convergence in one step with ¢ = 1.

Also possible to use feedback in order to make H itself close to
the identity matrix.



lterative Feedback Tuning (IFT)

Consider control signal given by policy u, i.e. ux = pu(xg, a),
where a parameter that we want to learn. It should solve

N-1
minimize ¢(zn) + Y fx(ar, ur) (3)
k=0
subject to zy11 = Fi(xg,ug), k€Zn_ (4)
ug = p(zp,a), ke€Zy (9)

with variable a for a given initial value x(, where ¢, fi and Fj
are defined as before.

Define J(a) as the function defined by (3) when (4— 5) are
used to substitute away xz; and wuy. Similarly consider z; and wy
to be functions of a.



Gradients of J

Using the chain rule

N-1

dJ(a) do(xzy)dry 3 Ofi(xr, ur) deg O fi(zg, ug) dug
daT dx}f, daT — &U;‘g daT au{ daT’
where

drgrr  OF(wp,up) dog | OF (wp,up) dug

daT 89:{ daT 8u£ daT
dug _ Op(zy, a) deg | Op(zy, a)
daT ozl daT Oal

The initial value is zero.



Linear System

Let Fi(x,u) = Agx + Byu, and let u(z,a) = Lx, where

LeR™"™witha” =[Ly --- Ly,], where L; are the rows of
L, we have
degyr , day duk
daf ~ “FdaT " daT
duk dxk; . T
T = Ld(TT + bdiag(zy, ).

Derivatives are obtained by simulation of closed loop system or
from experiments involving closed loop system with current x,
as an additional input.



