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Approximation in Policy Space
Assume that we are given a Q-function, and that we would like

to solve

µ(x) = argmin
u

Q(x, u) (1)

approximately. Define µ̃(a, u) using an ANN or a linear

regression with a as parameter vector. Solve the LS problem

minimize
1

2

N
∑

k=1

‖uk − µ̃(a, uk)‖
2
2

with variable a, where uk, k ∈ NN are solutions to (1) for the

samples x = xk.

◮ Less optimization problems need to be solved when the

policy is implemented in real-time

◮ Evaluating µ̃ might be done much faster than solving the

optimization problem.

◮ This approach can be used for any policy for which we

know its values for a discrete number of samples.



Iterative Learning Control (ILC)

Consider

minimize φ(xN ) +
N−1
∑

k=0

fk(xk, uk)

subject to xk+1 = Fk(xk, uk), k ∈ ZN−1

(2)

Define J(u) as the function defined by objective function when

constraints used to substitute away xk, i.e. J is a function of

u = (u0, . . . , uN−1).

Similarly consider xk to be functions of u.



Gradient of J
Chain rule gives

dJ(u)

duT
=

dφ(xN )

dxTN

dxN
duT

+
N−1
∑

k=0

∂fk(xk, uk)

∂xTk

dxk
duT

+
∂fk(xk, uk)

∂uTk

duk
duT

,

where

dxk+1

duTl
=

∂Fk(xk, uk)

∂xTk

dxk
duTl

+
∂Fk(xk, uk)

∂uTk
δ(k − l),

and where

δ(k) =

{

1, k = 0

0, k 6= 0.

The initial value is zero. Notice that duk

duT is a trivial matrix.

For the linear case when Fk(x, u) = Akx+Bku we have

dxk+1

duTl
= Ak

dxk
duTl

+Bkδ(k − l).



Gradient of J ctd.
For the gradient one simulation or experiment has to be carried

out for each value of l and each component of the control

signal.

In case Ak and Bk do not depend on k

dxk
duTl

=
dxk−l

duT
0

,

Hence just needs to obtain the so-called impulse response of

the dynamical system.

For nonlinear Fk, assuming Fk(0, 0) = 0,

dxk+1

dui,j
≈ Fk

(

dxk
dui,j

,
duk
dui,j

)

.

Here index i refers to stage index and index j to component

index.



ILC Using Root-Finding

Consider

xk+1 = Fk(xk, uk)

yk = Gk(xk, uk)

Assume x0 = 0. Let y = (y0, y1, . . . , yN−1) and

u = (u0, u1, . . . , uN−1). Define H such that

y = H(u).

Find u such that error signal ǫ defined as

ǫ(u) = y − r = H(u)− r

is zero for given reference value r for y.



Root-Finding Algorithm

The following root-finding algorithm

uk+1 = uk − tǫ(uk)

is used.

Here sub-index k refers to iteration index.

Evaluation of ǫ can be done with simulations or with

experiments on a real dynamical system.

Algorithm converges if ǫ is Lipschitz continuous with Lipschitz

constant β and strongly monotone with dissipation α for

t ∈ (0, 2/(α+ β)]



System Theory Interpretation of Convergence Criteria

Lipschitz constant β is incremental gain of the dynamical

system, i.e. smallest β such that

‖H(u)−H(v)‖2 ≤ β‖u− v‖2, ∀u, v ∈ R
Nm.

The strong monotonicity condition is the same as saying that

the dynamical system is incrementally strictly passive with

dissipation α, i.e.

(H(u)−H(v))T (u− v) ≥ α‖u− v‖22, ∀u, v ∈ R
Nm.



Linear System

Assume Fk(x, u) = Ax+Bu and Gk = Cx+Du. Then H is a

linear function and we may write y = Hu, where

H =













h0 0 · · · 0

h1
. . .

. . .
...

...
. . .

. . . 0
hN−1 · · · h1 h0













,

where h0 = D and hi = CAiB ∈ R
m for i ∈ N.



Convergence Criterion

Lipschitz constant is β = ‖H‖2, and criterion for strong

monotonicity is

(u− v)HT (u− v) ≥ α‖u− v‖22, ∀u, v ∈ R
Nm.

equivalent to

1

2
xT

(

H +HT
)

x ≥ α‖x‖22, ∀x ∈ R
Nm,

equivalent to λmin = λmin(H +HT ) > 2α.

If we then denote largest eigenvalue of HTH with λmax it

follows that the algorithm converges for

t ∈ (0, 4/(λmin + 2λmax)], assuming that λmin > 0.



Transformation of ǫ

Let T be such that T (ǫ) = 0 if and only if ǫ = 0, and apply the

root finding algorithm to T (ǫ(u)).

One possible choice is to take T as a linear function defined by

an invertible matrix T , i.e. we consider Te(u) = 0.

For the linear case the matrix H above is replace by TH, and it

is for this matrix we need to compute α and β.

In case we know the impulse response we may take T = H−1

and we obtain convergence in one step with tk = 1.

Also possible to use feedback in order to make H itself close to

the identity matrix.



Iterative Feedback Tuning (IFT)

Consider control signal given by policy µ, i.e. uk = µ(xk, a),
where a parameter that we want to learn. It should solve

minimize φ(xN ) +
N−1
∑

k=0

fk(xk, uk) (3)

subject to xk+1 = Fk(xk, uk), k ∈ ZN−1 (4)

uk = µ(xk, a), k ∈ ZN−1 (5)

with variable a for a given initial value x0, where φ, fk and Fk

are defined as before.

Define J(a) as the function defined by (3) when (4— 5) are

used to substitute away xk and uk. Similarly consider xk and uk
to be functions of a.



Gradients of J

Using the chain rule

dJ(a)

daT
=

dφ(xN )

dxTN

dxN
daT

+
N−1
∑

k=0

∂fk(xk, uk)

∂xTk

dxk
daT

+
∂fk(xk, uk)

∂uTk

duk
daT

,

where

dxk+1

daT
=

∂F (xk, uk)

∂xTk

dxk
daT

+
∂F (xk, uk)

∂uTk

duk
daT

duk
daT

=
∂µ(xk, a)

∂xTk

dxk
daT

+
∂µ(xk, a)

∂aT
.

The initial value is zero.



Linear System

Let Fk(x, u) = Akx+Bku, and let µ(x, a) = Lx, where

L ∈ R
m×n with aT =

[

L1 · · · Lm

]

, where Li are the rows of

L, we have

dxk+1

daT
= Ak

dxk
daT

+Bk

duk
daT

duk
daT

= L
dxk
daT

+ bdiag(xTk ).

Derivatives are obtained by simulation of closed loop system or

from experiments involving closed loop system with current xk
as an additional input.


