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Optimal Control Problem

minimize
∑

∞

k=0 γ
kf(xk, uk)

subject to xk+1 = F (xk, uk), k ∈ Z+

with variables (u0, x1, . . .), where x0 is given.



Bellman Equation

Assume f(0, 0) = 0, F (0, 0) = 0 and that f is strictly positive

definite. If there exists a strictly positive definite and

quadratically bounded V such that the Bellman equation

V (x) = min
u∈U(x)

{f(x, u) + γV (F (x, u))}

holds, then

◮ (a) J∗(x) = V (x)

◮ (b) The minimizing argument in the Bellman equation is an

optimal feedback that results in a globally convergent

closed loop system if γ is sufficiently close to one.



The Q-Function

Let Q(x, u) = f(x, u) + γV (F (x, u)). Then Bellman equation

reads

V (x) = min
u

Q(x, u),

and

γV (F (x, ū)) = min
u

γQ(F (x, ū), u).

By adding f(x, ū) to both sides we get

Q(x, ū) = f(x, ū) + min
u

γQ (F (x, ū), u) . (1)



The Bellman Q-Operator and VI

Let the Bellman Q-operator be

TQ(Q)(x, ū) = f(x, ū) + min
u

γQ (F (x, ū), u) . (2)

Define the VI

Qk+1 = TQ(Qk) (3)

with boundary condition Q0(x, u) = f(x, u).

You will show in Exercise 11.6 that Qk(x, u) converges to

Q(x, u) satisfying (1) as k → ∞.



Generalize VI for Q-Function

Let

e(Q) = Q− TQ(Q),

Then (1) is equivalent to as e(Q) = 0.

Apply the root finding algorithm

Qk+1 = Qk − tke(Qk), k ∈ Z+ (4)

◮ You can initialize with Q0 = f , but there are better ways.

◮ The step lengths tk should satisfy tk ∈ (0, 1].

◮ Recover VI for tk = 1.

Proof of convergence on white board.



Q-Learning

It is possible to instead of in each iteration k consider all values

of (x, u) only consider one sample (xk, uk) at a time.

Theses samples could be generated in a cyclic order or in a

randomized cyclic order such that each sample is visited

infinitely many times.

We assume that (x, u) belongs to a finite set. Then it holds that

Qk+1(xk, uk) = Qk(xk, uk)

− tk

[

Q(xk, uk)− f(xk, uk)−min
u

γQ(F (xk, uk), u)
]

converges to a solution of e(Q) = 0 as k goes to infinity when

tk ∈ (0, 1] and γ ∈ (0, 1).



Policy Iteration

◮ Reinforcement learning based on PI is called self-learning.

◮ The policy evaluation step is referred to as a critic

◮ The policy improvement is referred to as an actor.

◮ These type of methods are called actor-critic methods.

◮ In case parametric approximations using ANNs are

involved the actor and critic are called actor networks and

critic networks, respectively.



Recap of PI using Value Function

Bellman policy operator:

Tµ(V )(x) = f(x, µ(x)) + γV (F (x, µ (x))) (5)

for a given function µ.

Iterate starting with initial µ0:

1. Solve (policy evaluation step)

Vk(x) = Tµk
(Vk)(x), (6)

2. Solve (policy improvement step)

µk+1(x) = argmin
u∈U(x)

{f(x, u) + γVk (F (x, u))} . (7)



Policy Iteration using Q-Function
Let Qk(x, u) = f(x, u) + γVk(F (x, u)). Then

Vk(x) = Qk (x, µk(x))

from (6), and therefore

Vk(F (x, u)) = Qk (F (x, u), µk(F (x, u))) .

Multiply with γ and add f(x, u) to obtain that Qk is the solution

of

Qk (x, u) = f (x, u) + γQk (F (x, u) , µk(F (x, u))) . (8)

This is the policy evaluation step in terms of the Q-function.

We then obtain a new feedback policy by solving

µk+1(x) = argmin
u

Qk (x, u) , (9)

which is the policy improvement step in terms of the Q-function.

These iterations results in the same solution as (6–7).



LQ Control

minimize
∑

∞

k=0 γ
k
(

xTk Sxk + uTkRuk
)

subject to xk+1 = Axk +Buk
x0 given

(10)

We guess that

Qk(x, u) =

[

x

u

]T [

Uk Wk

W T
k Vk

] [

x

u

]

for some
[

Uk Wk

W T
k Vk

]

∈ S
m+n
+ ,

where Vk ∈ S
m
++. It then follows from (9) that

µk(x) = −Lk+1x,

where Lk+1 = V −1
k W T

k .



LQ Control ctd.
The recursion for Qk in (8) is seen to be satisfied if
[

Uk Wk

W T
k Vk

]

=

[

S 0
0 R

]

+ γ
[

A B
]T

[

I

−Lk

]T [

Uk Wk

W T
k Vk

] [

I

−Lk

]

[

A B
]

for a given Lk. This is an algebraic Lyapunov equation which

has a positive semidefinite solution since
[

S 0
0 R

]

is positive semidefinite. This assumes that

√
γ

[

I

−Lk

]

[

A B
]

has all its eigenvalues strictly inside the unit disc. This is true if√
γ(A−BLk) has all its eigenvalues strictly inside the unit disc

by Exercise 11.1.



Critic Network

It holds that (8) implies

Qk(x0, u0) = f (x0, u0) + γQk (F (x0, u0) , µk (F (x0, u0)))

= f (x0, u0) + γQk (x1, µk (x1))

= f (x0, u0) + γf (x1, µk(x1)) + γ2Qk (x2, µk (x2))

...

= f (x0, u0) +
N−1
∑

i=1

γif (xi, µk(xi)) + γNQk (xN , µk (xN )) ,

where xi+1 = F (xi, µk(xi)) for 1 ≤ i ≤ N − 1, and

x1 = F (x0, u0).

In case N is large and µk is stabilizing we have that xN is close

to zero and that also Qk(xN ) is close to zero.



Critic Network ctd.
We denote these approximations for different initial values

(xs, us) for 1 ≤ s ≤ r as

βs
k = f(xs, us) +

N−1
∑

i=1

γif (xi, µk(xi)) ,

where xi+1 = F (xi, µk(xi)) for 1 ≤ i ≤ N − 1, and

x1 = F (xs, us). We then find approximation of Qk by solving

minimize 1
2

∑r
s=1

(

Q̃(xs, us, ak)− βs
k

)2

with variable ak, where Q̃k is an ANN or linear regression.

After this we use the following exact policy improvement step

µk+1(x) = argmin
u

Q̃ (x, u, ak) . (11)



LQ Control

Let ϕ(x, u) = (x21, x
2
2, u

2, 2x1x2, 2x1u, 2x2u) and

Q̃(x, u, a) = aTϕ(x, u),

With
[

P̃ r̃

r̃T q̃

]

=





a1 a4 a5
a4 a2 a6
a5 a6 a3





we may write

Q̃k(x, u, a) =

[

x

u

]T [

P̃ r̃

r̃T q̃

] [

x

u

]

. (12)

Then ak is the solution to the linear LS problem

minimize 1
2

∑r
s=1

(

ϕT (xs, us)a− βs
k

)2

with variable a.



LQ Control ctd.
The solution ak satisfies the normal equations

ΦT
kΦkak = ΦT

k βk,

where

Φk =







ϕT (x1, u1)
...

ϕT (xr, ur)






, βk =







β1
k
...

βr
k






,

whith

βs
k = (xs)T Sxs+(us)T Rus+

N−1
∑

i=1

γi
(

xTi Sxi + µk(xi)
TRµk(xi)

)

,

where x1 = Axs +Bus and xi+1 = Axi +Bµk(xi) for

1 ≤ i ≤ N − 2 with initial values xs, 1 ≤ s ≤ r.

It is crucial to choose (xs, us) such that ΦT
kΦk is invertible. We

realize that we need r ≥ 6 for this hold.



LQ Control ctd.

The solution to (11) is given by

µk+1(x) = argmin
u

Q̃k(x, u, ak) = −q̃−1
k r̃Tk x

assuming that q̃ is positive. Here q̃k and r̃k are defined from ak.

We may hence write

µk+1(x) = −Lk+1x,

where Lk+1 = q̃−1
k r̃Tk . It is a good idea to start with some L0

such that µ0 is stabilizing.



Linear Programming Formulation
A solution to the Bellman equation for the Q-function can be

obtained by solving the Linear Program (LP)

maximize
∑

(x,u) c(x, u)Q(x, u)

subject to Q(x, u) ≤ f(x, u) + γQ(F (x, u), v), ∀(x, u, v)
(13)

where c(x, u) > 0 is arbitrary.

◮ The variables (x, u) has to belong to a finite set.

◮ The optimization variable is Q(x, u) for all values of x and u

in this finite set.

◮ The LP formulation is often not tractable in general, since

there might be many variables and constraints.

◮ It is possible to approximate Q(x, u) with a linear

regression.

◮ Sampling of constraints may also be used.

◮ We may use the LP to approximately evaluate a fixed

policy µ, which may then be used together with PI.


