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Optimal Control Problem

minimize Y23 * f(w, ur)
subjectto xyy 1 = F(ag,ux), keZy

with variables (ug, z1, . ..), where z is given.



Bellman Equation

Assume f(0,0) =0, F'(0,0) = 0 and that f is strictly positive
definite. If there exists a strictly positive definite and
quadratically bounded V' such that the Bellman equation

V()= min {f(eu) +V(F ()

holds, then
> (a) J*(z) = V(x)
» (b) The minimizing argument in the Bellman equation is an

optimal feedback that results in a globally convergent
closed loop system if v is sufficiently close to one.



The Q-Function

Let Q(z,u) = f(z,u) + vV (F(z,u)). Then Bellman equation
reads
V(z) = min Q(z, u),

and
YV (F(z,u)) = m&n YQ(F(x,u),u).

By adding f(x,u) to both sides we get

Q(x’ﬂ) :f(l‘,ﬂ)+muin’yQ (F(:C,’L_L),u) (1)



The Bellman @-Operator and VI

Let the Bellman Q-operator be
To(Q)(z,u) = f(z,u) + minyQ (F(z,a), u). (2)

Define the VI
Qr+1 =To(Qk) 3)
with boundary condition Qo(z, u) = f(z,u).

You will show in Exercise 11.6 that Q(z, u) converges to
Q(z,u) satisfying (1) as k — oc.



Generalize VI for Q-Function

Let
e(Q) = Q —Tp(Q),

Then (1) is equivalent to as e(Q) = 0.

Apply the root finding algorithm

Qi1 = Qr —tre(Qr), keZy (4)

» You can initialize with Qg = f, but there are better ways.
» The step lengths ¢, should satisfy ¢ € (0, 1].
» Recover Vlfort, = 1.

Proof of convergence on white board.



(-Learning

It is possible to instead of in each iteration k& consider all values
of (x,u) only consider one sample (xy,uy) at a time.

Theses samples could be generated in a cyclic order or in a
randomized cyclic order such that each sample is visited
infinitely many times.

We assume that (z, u) belongs to a finite set. Then it holds that

Qrr1(wr, ur) = Qr(wr, ug)

—th | Qar, ur) = f(wr, ur) — minyQ(F (zg, up), u)

converges to a solution of ¢(Q) = 0 as k goes to infinity when
tr € (0,1] and v € (0, 1).



Policy lteration

vVvYyyvyy

Reinforcement learning based on Pl is called self-learning.
The policy evaluation step is referred to as a critic

The policy improvement is referred to as an actor.

These type of methods are called actor-critic methods.

In case parametric approximations using ANNs are
involved the actor and critic are called actor networks and
critic networks, respectively.



Recap of Pl using Value Function

Bellman policy operator:
Tu(V)(x) = [z, () + 7V (F(z, p (2)))
for a given function p.

lterate starting with initial z:
1. Solve (policy evaluation step)

V(@) = Ty, (Vi) (2),

2. Solve (policy improvement step)

pi1(x) = argmin { f(z, u) + Vi (F(z,u))} -

uelU(z)



Policy lteration using @-Function
Let Qr(x,u) = f(z,u) + YVi(F(x,u)). Then

Vi(z) = Q (2, up(x))

from (6), and therefore

Multiply with v and add f(z,«) to obtain that @ is the solution
of
Qk (v, u) = f (z,u) +Qk (F (z,u) , p(F(z,u))) . (8)
This is the policy evaluation step in terms of the @-function.
We then obtain a new feedback policy by solving
HEk+1 ([E) = argmin Qk (xa U) ) (9)

which is the policy improvement step in terms of the @-function.

These iterations results in the same solution as (6-7).



LQ Control

minimize Y32 * (2] Szy, + ul Ruy,)
subjectto =z = Az + Buy (10)
xo given

We guess that
T
| Uk Wk T
aen=[] e %[

U, Wi
Wl Vi

for some

] e sy,

where V, € S, . It then follows from (9) that
pi(z) = =Lz,

where Ly =V, "W/



LQ Control ctd.

The recursion for Q. in (8) is seen to be satisfied if
U. Wil _[S 0
wl' Vi] [0 R
T
T I Uk Wk I
o [] % ][] o

for a given L. This is an algebraic Lyapunov equation which
has a positive semidefinite solution since

S 0
0 R
is positive semidefinite. This assumes that
vi| |4 B
_Lk

has all its eigenvalues strictly inside the unit disc. This is true if
V(A — BLy) has all its eigenvalues strictly inside the unit disc
by Exercise 11.1.



Critic Network
It holds that (8) implies

Qr(zo,u0) = f (z0,u0) +YQrk (F (z0,u0) , x (F (w0, u0)))
= f (w0, u0) +YQk (w1, i (1))
= [ (@0, u0) +7f (1, (1)) + 7V Qr (w2, i (22))

N-1
= f(zo,u0) + Y V' f (i (i) + 7V Qr (wnr, i ()
i=1
where x; 11 = F(x;, pg(z;)) for1 <i: < N —1,and
r1 = F(20,u0)-

In case N is large and py, is stabilizing we have that = is close
to zero and that also Qx(xy) is close to zero.



Critic Network ctd.

We denote these approximations for different initial values
(%, u¥)forl1 < s <ras

N-1
Bi = f(au®) + Y A (@i ()

=1

where x;11 = F(x;, pg(x;)) for1 <i: < N —1,and
x1 = F(2*,v®). We then find approximation of @ by solving

2
. . . 1 =
minimize 5>, (Q(:vs, u® ag) — B,‘;’)
with variable a;,, where Q) is an ANN or linear regression.

After this we use the following exact policy improvement step

prr1(x) = argmin Q (x,u,ar) . (11)

u



LQ Control
Let o(z,u) = (2%, 23, u?, 22129, 271 u, 279u) and

Q($7 u, a’) = aTSD('r? u),

ay a4 as
a4 a2 dap
as ae as

e |

Then a, is the solution to the linear LS problem

With

=

2

Sl

KX N

| I
I

we may write

minimize >0, (7 (2%, u®)a — 52)2

with variable a.



LQ Control ctd.

The solution a;, satisfies the normal equations
Of dray, = P B,

where o1 .

@ (x5, u) By

q)k = ) ﬁk = 5

(pT(xr7 ur) Bg

whith
N-1

By = (xS)T Sz® -+ (us)T Ru® + Z At (ac;FSacZ + uk(aci)TR,uk(a:i)) ,
i=1

where x; = Az® + Bu® and z;41 = Az; + Bug(z;) for
1 <i < N —2with initial values z%,1 < s <.

It is crucial to choose (z*, *) such that @{@k is invertible. We
realize that we need r > 6 for this hold.



LQ Control ctd.

The solution to (11) is given by

pr+1(z) = argmin Qk(x,u,ak) — _qk_lfka
u

assuming that ¢ is positive. Here g, and 7, are defined from ay.
We may hence write

pr+1(z) = — L,

where L1 = q,;lff. It is a good idea to start with some L
such that  is stabilizing.



Linear Programming Formulation
A solution to the Bellman equation for the @-function can be
obtained by solving the Linear Program (LP)

maximize -, ) c(z,w)Q(z,u)
subjectto Q(z,u) < f(z,u) + vQ(F(z,u),v), ¥(x,u,v)
(13)

where ¢(z,u) > 0 is arbitrary.
» The variables (z,u) has to belong to a finite set.

» The optimization variable is Q(x, ) for all values of x and u
in this finite set.

» The LP formulation is often not tractable in general, since
there might be many variables and constraints.

» It is possible to approximate Q(z,w) with a linear
regression.

» Sampling of constraints may also be used.

> We may use the LP to approximately evaluate a fixed
policy u, which may then be used together with PI.



