Optimal Control, Lecture 6: VI and PI for RL

Anders Hansson

Division of Automatic Control
Linkoping University

Contents

- The optimal control problem
- The Q-function
- Infinite horizon value iteration
- Q-learning
- Policy iteration
- Critic network
- Linear programming formulation

Optimal Control Problem

$\begin{array}{ll}\text { minimize } & \sum_{k=0}^{\infty} \gamma^{k} f\left(x_{k}, u_{k}\right) \\ \text { subject to } & x_{k+1}=F\left(x_{k}, u_{k}\right), \quad k \in \mathbf{Z}_{+}\end{array}$ with variables $\left(u_{0}, x_{1}, \ldots\right)$, where x_{0} is given.

Bellman Equation

Assume $f(0,0)=0, F(0,0)=0$ and that f is strictly positive definite. If there exists a strictly positive definite and quadratically bounded V such that the Bellman equation

$$
V(x)=\min _{u \in U(x)}\{f(x, u)+\gamma V(F(x, u))\}
$$

holds, then

- (a) $J^{*}(x)=V(x)$
- (b) The minimizing argument in the Bellman equation is an optimal feedback that results in a globally convergent closed loop system if γ is sufficiently close to one.

The Q-Function

Let $Q(x, u)=f(x, u)+\gamma V(F(x, u))$. Then Bellman equation reads

$$
V(x)=\min _{u} Q(x, u),
$$

and

$$
\gamma V(F(x, \bar{u}))=\min _{u} \gamma Q(F(x, \bar{u}), u) .
$$

By adding $f(x, \bar{u})$ to both sides we get

$$
\begin{equation*}
Q(x, \bar{u})=f(x, \bar{u})+\min _{u} \gamma Q(F(x, \bar{u}), u) . \tag{1}
\end{equation*}
$$

The Bellman Q-Operator and VI

Let the Bellman Q-operator be

$$
\begin{equation*}
T_{Q}(Q)(x, \bar{u})=f(x, \bar{u})+\min _{u} \gamma Q(F(x, \bar{u}), u) \tag{2}
\end{equation*}
$$

Define the VI

$$
\begin{equation*}
Q_{k+1}=T_{Q}\left(Q_{k}\right) \tag{3}
\end{equation*}
$$

with boundary condition $Q_{0}(x, u)=f(x, u)$.
You will show in Exercise 11.6 that $Q_{k}(x, u)$ converges to $Q(x, u)$ satisfying (1) as $k \rightarrow \infty$.

Generalize VI for Q-Function

Let

$$
e(Q)=Q-T_{Q}(Q)
$$

Then (1) is equivalent to as $e(Q)=0$.
Apply the root finding algorithm

$$
\begin{equation*}
Q_{k+1}=Q_{k}-t_{k} e\left(Q_{k}\right), \quad k \in \mathbf{Z}_{+} \tag{4}
\end{equation*}
$$

- You can initialize with $Q_{0}=f$, but there are better ways.
- The step lengths t_{k} should satisfy $t_{k} \in(0,1]$.
- Recover VI for $t_{k}=1$.

Proof of convergence on white board.

Q-Learning

It is possible to instead of in each iteration k consider all values of (x, u) only consider one sample $\left(x_{k}, u_{k}\right)$ at a time.

Theses samples could be generated in a cyclic order or in a randomized cyclic order such that each sample is visited infinitely many times.

We assume that (x, u) belongs to a finite set. Then it holds that

$$
\begin{aligned}
Q_{k+1}\left(x_{k}, u_{k}\right) & =Q_{k}\left(x_{k}, u_{k}\right) \\
& -t_{k}\left[Q\left(x_{k}, u_{k}\right)-f\left(x_{k}, u_{k}\right)-\min _{u} \gamma Q\left(F\left(x_{k}, u_{k}\right), u\right)\right]
\end{aligned}
$$

converges to a solution of $e(Q)=0$ as k goes to infinity when $t_{k} \in(0,1]$ and $\gamma \in(0,1)$.

Policy Iteration

- Reinforcement learning based on PI is called self-learning.
- The policy evaluation step is referred to as a critic
- The policy improvement is referred to as an actor.
- These type of methods are called actor-critic methods.
- In case parametric approximations using ANNs are involved the actor and critic are called actor networks and critic networks, respectively.

Recap of PI using Value Function

Bellman policy operator:

$$
\begin{equation*}
T_{\mu}(V)(x)=f(x, \mu(x))+\gamma V(F(x, \mu(x))) \tag{5}
\end{equation*}
$$

for a given function μ.
Iterate starting with initial μ_{0} :

1. Solve (policy evaluation step)

$$
\begin{equation*}
V_{k}(x)=T_{\mu_{k}}\left(V_{k}\right)(x), \tag{6}
\end{equation*}
$$

2. Solve (policy improvement step)

$$
\begin{equation*}
\mu_{k+1}(x)=\underset{u \in U(x)}{\operatorname{argmin}}\left\{f(x, u)+\gamma V_{k}(F(x, u))\right\} \tag{7}
\end{equation*}
$$

Policy Iteration using Q-Function

 Let $Q_{k}(x, u)=f(x, u)+\gamma V_{k}(F(x, u))$. Then$$
V_{k}(x)=Q_{k}\left(x, \mu_{k}(x)\right)
$$

from (6), and therefore

$$
V_{k}(F(x, u))=Q_{k}\left(F(x, u), \mu_{k}(F(x, u))\right) .
$$

Multiply with γ and add $f(x, u)$ to obtain that Q_{k} is the solution of

$$
\begin{equation*}
Q_{k}(x, u)=f(x, u)+\gamma Q_{k}\left(F(x, u), \mu_{k}(F(x, u))\right) . \tag{8}
\end{equation*}
$$

This is the policy evaluation step in terms of the Q-function.
We then obtain a new feedback policy by solving

$$
\begin{equation*}
\mu_{k+1}(x)=\underset{u}{\operatorname{argmin}} Q_{k}(x, u), \tag{9}
\end{equation*}
$$

which is the policy improvement step in terms of the Q-function.
These iterations results in the same solution as (6-7).

LQ Control

$$
\begin{array}{ll}
\text { minimize } & \sum_{k=0}^{\infty} \gamma^{k}\left(x_{k}^{T} S x_{k}+u_{k}^{T} R u_{k}\right) \\
\text { subject to } & x_{k+1}=A x_{k}+B u_{k} \tag{10}\\
& x_{0} \text { given }
\end{array}
$$

We guess that

$$
Q_{k}(x, u)=\left[\begin{array}{l}
x \\
u
\end{array}\right]^{T}\left[\begin{array}{cc}
U_{k} & W_{k} \\
W_{k}^{T} & V_{k}
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]
$$

for some

$$
\left[\begin{array}{cc}
U_{k} & W_{k} \\
W_{k}^{T} & V_{k}
\end{array}\right] \in \mathbf{S}_{+}^{m+n},
$$

where $V_{k} \in \mathbf{S}_{++}^{m}$. It then follows from (9) that

$$
\mu_{k}(x)=-L_{k+1} x
$$

where $L_{k+1}=V_{k}^{-1} W_{k}^{T}$.

LQ Control ctd.

The recursion for Q_{k} in (8) is seen to be satisfied if

$$
\begin{aligned}
{\left[\begin{array}{cc}
U_{k} & W_{k} \\
W_{k}^{T} & V_{k}
\end{array}\right] } & =\left[\begin{array}{cc}
S & 0 \\
0 & R
\end{array}\right] \\
& +\gamma\left[\begin{array}{ll}
A & B
\end{array}\right]^{T}\left[\begin{array}{c}
I \\
-L_{k}
\end{array}\right]^{T}\left[\begin{array}{cc}
U_{k} & W_{k} \\
W_{k}^{T} & V_{k}
\end{array}\right]\left[\begin{array}{c}
I \\
-L_{k}
\end{array}\right]\left[\begin{array}{ll}
A & B
\end{array}\right]
\end{aligned}
$$

for a given L_{k}. This is an algebraic Lyapunov equation which has a positive semidefinite solution since

$$
\left[\begin{array}{ll}
S & 0 \\
0 & R
\end{array}\right]
$$

is positive semidefinite. This assumes that

$$
\sqrt{\gamma}\left[\begin{array}{c}
I \\
-L_{k}
\end{array}\right]\left[\begin{array}{ll}
A & B]
\end{array}\right.
$$

has all its eigenvalues strictly inside the unit disc. This is true if $\sqrt{\gamma}\left(A-B L_{k}\right)$ has all its eigenvalues strictly inside the unit disc by Exercise 11.1.

Critic Network

It holds that (8) implies

$$
\begin{aligned}
Q_{k}\left(x_{0}, u_{0}\right) & =f\left(x_{0}, u_{0}\right)+\gamma Q_{k}\left(F\left(x_{0}, u_{0}\right), \mu_{k}\left(F\left(x_{0}, u_{0}\right)\right)\right) \\
& =f\left(x_{0}, u_{0}\right)+\gamma Q_{k}\left(x_{1}, \mu_{k}\left(x_{1}\right)\right) \\
& =f\left(x_{0}, u_{0}\right)+\gamma f\left(x_{1}, \mu_{k}\left(x_{1}\right)\right)+\gamma^{2} Q_{k}\left(x_{2}, \mu_{k}\left(x_{2}\right)\right) \\
& \vdots \\
& =f\left(x_{0}, u_{0}\right)+\sum_{i=1}^{N-1} \gamma^{i} f\left(x_{i}, \mu_{k}\left(x_{i}\right)\right)+\gamma^{N} Q_{k}\left(x_{N}, \mu_{k}\left(x_{N}\right)\right)
\end{aligned}
$$

where $x_{i+1}=F\left(x_{i}, \mu_{k}\left(x_{i}\right)\right)$ for $1 \leq i \leq N-1$, and $x_{1}=F\left(x_{0}, u_{0}\right)$.

In case N is large and μ_{k} is stabilizing we have that x_{N} is close to zero and that also $Q_{k}\left(x_{N}\right)$ is close to zero.

Critic Network ctd.

We denote these approximations for different initial values $\left(x^{s}, u^{s}\right)$ for $1 \leq s \leq r$ as

$$
\beta_{k}^{s}=f\left(x^{s}, u^{s}\right)+\sum_{i=1}^{N-1} \gamma^{i} f\left(x_{i}, \mu_{k}\left(x_{i}\right)\right)
$$

where $x_{i+1}=F\left(x_{i}, \mu_{k}\left(x_{i}\right)\right)$ for $1 \leq i \leq N-1$, and $x_{1}=F\left(x^{s}, u^{s}\right)$. We then find approximation of Q_{k} by solving

$$
\operatorname{minimize} \quad \frac{1}{2} \sum_{s=1}^{r}\left(\tilde{Q}\left(x^{s}, u^{s}, a_{k}\right)-\beta_{k}^{s}\right)^{2}
$$

with variable a_{k}, where \tilde{Q}_{k} is an ANN or linear regression.
After this we use the following exact policy improvement step

$$
\begin{equation*}
\mu_{k+1}(x)=\underset{u}{\operatorname{argmin}} \tilde{Q}\left(x, u, a_{k}\right) \tag{11}
\end{equation*}
$$

LQ Control

Let $\varphi(x, u)=\left(x_{1}^{2}, x_{2}^{2}, u^{2}, 2 x_{1} x_{2}, 2 x_{1} u, 2 x_{2} u\right)$ and

$$
\tilde{Q}(x, u, a)=a^{T} \varphi(x, u)
$$

With

$$
\left[\begin{array}{cc}
\tilde{P} & \tilde{r} \\
\tilde{r}^{T} & \tilde{q}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} & a_{4} & a_{5} \\
a_{4} & a_{2} & a_{6} \\
a_{5} & a_{6} & a_{3}
\end{array}\right]
$$

we may write

$$
\tilde{Q}_{k}(x, u, a)=\left[\begin{array}{l}
x \tag{12}\\
u
\end{array}\right]^{T}\left[\begin{array}{cc}
\tilde{P} & \tilde{r} \\
\tilde{r}^{T} & \tilde{q}
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right] .
$$

Then a_{k} is the solution to the linear LS problem

$$
\operatorname{minimize} \quad \frac{1}{2} \sum_{s=1}^{r}\left(\varphi^{T}\left(x^{s}, u^{s}\right) a-\beta_{k}^{s}\right)^{2}
$$

with variable a.

LQ Control ctd.

The solution a_{k} satisfies the normal equations

$$
\Phi_{k}^{T} \Phi_{k} a_{k}=\Phi_{k}^{T} \beta_{k}
$$

where

$$
\Phi_{k}=\left[\begin{array}{c}
\varphi^{T}\left(x^{1}, u^{1}\right) \\
\vdots \\
\varphi^{T}\left(x^{r}, u^{r}\right)
\end{array}\right], \quad \beta_{k}=\left[\begin{array}{c}
\beta_{k}^{1} \\
\vdots \\
\beta_{k}^{r}
\end{array}\right],
$$

whith
$\beta_{k}^{s}=\left(x^{s}\right)^{T} S x^{s}+\left(u^{s}\right)^{T} R u^{s}+\sum_{i=1}^{N-1} \gamma^{i}\left(x_{i}^{T} S x_{i}+\mu_{k}\left(x_{i}\right)^{T} R \mu_{k}\left(x_{i}\right)\right)$,
where $x_{1}=A x^{s}+B u^{s}$ and $x_{i+1}=A x_{i}+B \mu_{k}\left(x_{i}\right)$ for $1 \leq i \leq N-2$ with initial values $x^{s}, 1 \leq s \leq r$.

It is crucial to choose $\left(x^{s}, u^{s}\right)$ such that $\Phi_{k}^{T} \Phi_{k}$ is invertible. We realize that we need $r \geq 6$ for this hold.

LQ Control ctd.

The solution to (11) is given by

$$
\mu_{k+1}(x)=\underset{u}{\operatorname{argmin}} \tilde{Q}_{k}\left(x, u, a_{k}\right)=-\tilde{q}_{k}^{-1} \tilde{r}_{k}^{T} x
$$

assuming that \tilde{q} is positive. Here \tilde{q}_{k} and \tilde{r}_{k} are defined from a_{k}. We may hence write

$$
\mu_{k+1}(x)=-L_{k+1} x
$$

where $L_{k+1}=\tilde{q}_{k}^{-1} \tilde{r}_{k}^{T}$. It is a good idea to start with some L_{0} such that μ_{0} is stabilizing.

Linear Programming Formulation

A solution to the Bellman equation for the Q-function can be obtained by solving the Linear Program (LP)

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{(x, u)} c(x, u) Q(x, u) \\
\text { subject to } & Q(x, u) \leq f(x, u)+\gamma Q(F(x, u), v), \forall(x, u, v) \tag{13}
\end{array}
$$

where $c(x, u)>0$ is arbitrary.

- The variables (x, u) has to belong to a finite set.
- The optimization variable is $Q(x, u)$ for all values of x and u in this finite set.
- The LP formulation is often not tractable in general, since there might be many variables and constraints.
- It is possible to approximate $Q(x, u)$ with a linear regression.
- Sampling of constraints may also be used.
- We may use the LP to approximately evaluate a fixed policy μ, which may then be used together with PI.

