Optimal Control, Lecture 5: Reinforcement Learning (RL)

Anders Hansson

Division of Automatic Control Linkoping University

Contents

- The optimal control problem
- ► The *Q*-function
- Finite horizon value iteration
- Fitted value iteration

Optimal Control Problem

minimize
$$\phi(x_N) + \sum_{k=0}^{N-1} f_k(x_k, u_k)$$

subject to $x_{k+1} = F_k(x_k, u_k), \quad k \in \mathbf{Z}_{N-1}$ (1)

for a given initial value x_0 with variables $(u_0, x_1, \ldots, u_{N-1}, x_N)$.

Terminology

Optimal control Reinforcement learning

System	Environment
Controller	Agent
Control	Action
Incremental cost	Stage reward
Cost function	Reward function

Dynamic Programming

Suppose there exist finite solution to the backward Dynamic Programming recursion

$$V_N(x) = \phi(x)$$

$$V_k(x) = \min_u \{ f_k(x, u) + V_{k+1}(F_k(x, u)) \}$$
 (2)

 $k = N - 1, N - 2, \dots, 0$ Then there exists an optimal solution to (1) and

- (a) $J_k^*(x) = V_k(x)$ for all $k = 0, 1, ..., N, x \in X_n$
- (b) The optimal feedback control in each stage is the minimizing argument in (2)

The *Q*-function

Let

$$Q_k(x,u) = f_k(x,u) + V_{k+1}(F_k(x,u)), \quad k = 0, 1, \dots, N-1$$

Then the dynamic programming recursion is

$$V_k(x) = \min_u Q_k(x, u)$$

where $V_N(x) = \phi(x)$.

Approximation of the V-function

Approximate V_k with regression

$$\tilde{V}_k(x, a_k) = a_k^T \varphi_k(x)$$

or an ANN and then approximate Q_k with

$$\tilde{Q}_k(x, u, a) = \begin{cases} f_k(x, u) + \tilde{V}_{k+1}(F_k(x, u), a), & k \in \mathbf{Z}_{N-2} \\ f_k(x, u) + \phi(F_k(x, u)), & k = N-1. \end{cases}$$

Remark: No dependence on a for k = N - 1.

Fitted Value Iteration for the V-function For k = N - 1, N - 2, ..., 0:

1. Consider samples x_k^s , where $1 \le s \le r$ and let

$$\beta_k^s = \min_u \tilde{Q}_k(x_k^s, u, a_{k+1}), \tag{3}$$

where a_{k+1} is known from previous iterate.

2. Solv LS problem for next a_k :

minimize
$$\frac{1}{2}\sum_{s=1}^{r} \left(\tilde{V}_k(x_k^s, a) - \beta_k^s\right)^2$$

When \hat{V}_k linear regression model, the LS problem is a linear LS problem with closed form solution.

The approximate feedback function is given by

$$\mu_k(x) = \underset{u}{\operatorname{argmin}} \tilde{Q}_k(x, u, a_{k+1}).$$
(4)

The choice of samples and regression heavily affects the obtained quality of approximation .

LQ Control

minimize
$$x_N^T S x_N + \sum_{k=0}^{N-1} x_k^T S x_k + u_k^T R u_k$$

subject to $x_{k+1} = A x_k + B u_k, \quad k \in \mathbf{Z}_{N-1}$

for given x_0 , where $x_k \in \mathbf{R}^2$ and $u_k \in \mathbf{R}$.

Consider $\varphi(x) = (x_1^2, x_2^2, 2x_1x_2)$, let

$$\tilde{P} = \begin{bmatrix} a_1 & a_3 \\ a_3 & a_2 \end{bmatrix}$$

and let

$$\tilde{V}_k(x,a) = a^T \varphi(x) = x^T \tilde{P} x$$

Hence true value function $V_k(x) = x^T P_k x$ and approximate value function $\tilde{V}_k(x, a)$ agree if $\tilde{P} = P_k$.

Approximate *Q*-function:

$$\tilde{Q}_{k}(x, u, a) = x^{T}Sx + u^{T}Ru + (Ax + Bu)^{T}\tilde{P}(Ax + Bu)$$
$$= \begin{bmatrix} x \\ u \end{bmatrix}^{T} \begin{bmatrix} S + A^{T}\tilde{P}A & A^{T}\tilde{P}B \\ B^{T}\tilde{P}A & R + B^{T}\tilde{P}B \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}.$$
(5)

For k = N - 1 down to k = 0 we solve the linear LS problem in (3) to obtain

$$\beta_k^s = (x_k^s)^T \left\{ S + A^T \tilde{P}_{k+1} A - A^T \tilde{P}_{k+1} B \left(R + B^T \tilde{P}_{k+1} B \right)^{-1} \\ \times B^T \tilde{P}_{k+1} A \right\} x_k^s$$

assuming $R + B^T \tilde{P}_{k+1} B$ positive definite. Here $\tilde{P}_N = S$.

We then obtain a_k as solution to the linear LS problem

minimize
$$rac{1}{2}\sum_{s=1}^r \left(\varphi^T(x_k^s) a - \beta_k^s
ight)^2$$

with variable a. This defines \tilde{P}_k . The solution a_k satisfies the normal equations

$$\Phi_k^T \Phi_k a_k = \Phi_k^T \beta_k,$$

where

$$\Phi_{k} = \begin{bmatrix} \varphi^{T}(x_{k}^{1}) \\ \vdots \\ \varphi^{T}(x_{k}^{r}) \end{bmatrix}; \qquad \beta_{k} = \begin{bmatrix} \beta_{k}^{1} \\ \vdots \\ \beta_{k}^{r} \end{bmatrix}$$

It is here crucial to choose x_k^s such that $\Phi_k^T \Phi_k$ is invertible. We realize that we need $r \ge 3$ for this hold. From (4) and (5) we obtain

$$u_k = -\left(R_k + B_k^T \tilde{P}_{k+1} B_k\right)^{-1} B_k^T \tilde{P}_{k+1} A_k x_k$$

Finite horizon value iteration for the *Q*-function

Remember

$$V_k(x) = \min_u Q_k(x, u)$$

and hence

$$V_{k+1}(F_k(x,\bar{u})) = \min_u Q_{k+1}(F_k(x,\bar{u}),u)$$

Add $f_k(x, \bar{u})$ to both sides to obtain

 $Q_k(x,\bar{u}) = f_k(x,\bar{u}) + \min_u Q_{k+1}(F_k(x,\bar{u}),u), \quad k = N-2, N-3, \dots, 0$

where $Q_{N-1}(x, u) = f_{N-1}(x, u) + \phi(F_{N-1}(x, u)).$

Observations

- Iteration for Q-function equivalent to dynamic programming recursion.
- **b** Do not need to know F_k .
- Sufficient to be able to evaluate $F_k(x, \bar{u})$ using xperiments or digital twin.
- Q-function more complicated than value function V since V only function of x but Q also function of u.

Fitted value iteration for the Q-function Approximate Q_k as

$$\tilde{Q}_k(x, u, a_k) = a_k^T \varphi(x, u)$$

for $k \in \mathbf{Z}_{N-1}$ or with an ANN.

Consider samples $\left(x_{k}^{s},u_{k}^{s}\right)$ and define

$$\beta_{N-1}^s = \phi(F_{N-1}(x_{N-1}^s, u_{N-1}^s))$$

and

$$\beta_k^s = \min_u \tilde{Q}_{k+1}(F_k(x_k^s, u_k^s), u, a_{k+1}),$$
(6)

where a_{k+1} is a known value from previous iterate.

- We do not need an analytical expression for F_k in order to define β^s_k.
- Depending on how the feature vectors are chosen the minimization above could become very tractable.

Fitted value iteration for the *Q*-function ctd.

Define a_k as solution to

minimize
$$\frac{1}{2} \sum_{s=1}^{r} \left(\tilde{Q}_k(x_k^s, u_k^s, a) - f_k(x_k^s, u_k^s) - \beta_k^s \right)^2$$
 (7)

with variable a for $k \in \mathbf{Z}_{N-1}$.

The iterations start with k = N - 1 and goes down to k = 0, where we alternate between solving (7) and (6).

The approximate optimal control is

$$u_k^{\star} = \mu_k(x) = \operatorname*{argmin}_u \tilde{Q}_k(x, u, a_k).$$
(8)

Remark: We notice that using the *Q*-function instead of using the value function comes at the price of also having to sample the control signal space.

LQ Control

minimize
$$x_N^T S x_N + \sum_{k=0}^{N-1} x_k^T S x_k + u_k^T R u_k$$

subject to $x_{k+1} = A x_k + B u_k, \quad k \in \mathbf{Z}_{N-1}$

for given x_0 , where $x_k \in \mathbf{R}^2$ and $u_k \in \mathbf{R}$.

Let
$$\varphi(x,u) = (x_1^2, x_2^2, u^2, 2x_1x_2, 2x_1u, 2x_2u)$$
 and $\tilde{Q}_k(x,u,a) = a^T \varphi(x,u),$

With

$$\begin{bmatrix} \tilde{P} & \tilde{r} \\ \tilde{r}^T & \tilde{q} \end{bmatrix} = \begin{bmatrix} a_1 & a_4 & a_5 \\ a_4 & a_2 & a_6 \\ a_5 & a_6 & a_3 \end{bmatrix}$$

we may write

$$ilde{Q}_k(x,u,a) = \begin{bmatrix} x \\ u \end{bmatrix}^T \begin{bmatrix} \tilde{P} & \tilde{r} \\ \tilde{r}^T & \tilde{q} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}.$$

(9)

For k = N - 1 we define

$$\beta_{N-1}^s = \left(x_+^s\right)^T S x_+^s$$

where $x_{+}^{s} = Ax_{N-1}^{s} + Bu_{N-1}^{s}$. For k = N - 2 down to k = 0 we solve the linear LS problem in (6) to obtain

$$\beta_{k}^{s} = \left(x_{+}^{s}\right)^{T} \left(\tilde{P}_{k+1} - \tilde{r}_{k+1}\tilde{q}_{k+1}^{-1}\tilde{r}_{k+1}^{T}\right) x_{+}^{s},$$

where $x_+^s = Ax_k^s + Bu_k^s$.

We then obtain a_k for $k \in \mathbf{Z}_{N-1}$ as the solution to:

minimize
$$\frac{1}{2} \sum_{s=1}^{r} \left(\varphi^{T}(x_{k}^{s}, u_{k}^{s}) a - (x_{k}^{s})^{T} S x_{k}^{s} - (u_{k}^{s})^{T} R u_{k}^{s} - \beta_{k}^{s} \right)^{2}$$

The solution a_k satisfies the normal equations

$$\Phi_k^T \Phi_k a_k = \Phi_k^T \gamma_k,$$

where

$$\Phi_{k} = \begin{bmatrix} \varphi^{T}(x_{k}^{1}, u_{k}^{1}) \\ \vdots \\ \varphi^{T}(x_{k}^{r}, u_{k}^{r}) \end{bmatrix}, \qquad \gamma_{k} = \begin{bmatrix} \left(x_{k}^{1}\right)^{T} S x_{k}^{1} + \left(u_{k}^{1}\right)^{T} R u_{k}^{1} + \beta_{k}^{1} \\ \vdots \\ \left(x_{k}^{r}\right)^{T} S x_{k}^{r} + \left(u_{k}^{r}\right)^{T} R u_{k}^{r} + \beta_{k}^{r} \end{bmatrix}$$

Crucial to choose (x_k^s, u_k^s) such that $\Phi_k^T \Phi_k$ is invertible. We realize that we need $r \ge 6$ for this to hold.

Optimal feedback function is by (8) and (9) given by

$$\mu_k(x) = -\tilde{q}_k^{-1}\tilde{r}_k^T x,$$