Optimal Control, Lecture 5: Reinforcement Learning (RL)

Anders Hansson

Division of Automatic Control
Linkoping University

Contents

- The optimal control problem
- The Q-function
- Finite horizon value iteration
- Fitted value iteration

Optimal Control Problem

$$
\begin{array}{ll}
\operatorname{minimize} & \phi\left(x_{N}\right)+\sum_{k=0}^{N-1} f_{k}\left(x_{k}, u_{k}\right) \tag{1}\\
\text { subject to } & x_{k+1}=F_{k}\left(x_{k}, u_{k}\right), \quad k \in \mathbf{Z}_{N-1}
\end{array}
$$

for a given initial value x_{0} with variables $\left(u_{0}, x_{1}, \ldots, u_{N-1}, x_{N}\right)$.

Terminology

Optimal control Reinforcement learning

System
Controller
Control
Incremental cost
Cost function

Environment
Agent
Action
Stage reward
Reward function

Dynamic Programming

Suppose there exist finite solution to the backward Dynamic Programming recursion

$$
\begin{gather*}
V_{N}(x)=\phi(x) \\
V_{k}(x)=\min _{u}\left\{f_{k}(x, u)+V_{k+1}\left(F_{k}(x, u)\right)\right\} \tag{2}
\end{gather*}
$$

$k=N-1, N-2, \ldots, 0$ Then there exists an optimal solution to (1) and

- (a) $J_{k}^{*}(x)=V_{k}(x)$ for all $k=0,1, \ldots, N, x \in X_{n}$
- (b) The optimal feedback control in each stage is the minimizing argument in (2)

The Q-function

Let

$$
Q_{k}(x, u)=f_{k}(x, u)+V_{k+1}\left(F_{k}(x, u)\right), \quad k=0,1, \ldots, N-1
$$

Then the dynamic programming recursion is

$$
V_{k}(x)=\min _{u} Q_{k}(x, u)
$$

where $V_{N}(x)=\phi(x)$.

Approximation of the V-function

Approximate V_{k} with regression

$$
\tilde{V}_{k}\left(x, a_{k}\right)=a_{k}^{T} \varphi_{k}(x)
$$

or an ANN and then approximate Q_{k} with

$$
\tilde{Q}_{k}(x, u, a)=\left\{\begin{array}{l}
f_{k}(x, u)+\tilde{V}_{k+1}\left(F_{k}(x, u), a\right), \quad k \in \mathbf{Z}_{N-2} \\
f_{k}(x, u)+\phi\left(F_{k}(x, u)\right), \quad k=N-1
\end{array}\right.
$$

Remark: No dependence on a for $k=N-1$.

Fitted Value Iteration for the V-function

For $k=N-1, N-2, \ldots, 0$:

1. Consider samples x_{k}^{s}, where $1 \leq s \leq r$ and let

$$
\begin{equation*}
\beta_{k}^{s}=\min _{u} \tilde{Q}_{k}\left(x_{k}^{s}, u, a_{k+1}\right) \tag{3}
\end{equation*}
$$

where a_{k+1} is known from previous iterate.
2. Solv LS problem for next a_{k} :

$$
\operatorname{minimize} \frac{1}{2} \sum_{s=1}^{r}\left(\tilde{V}_{k}\left(x_{k}^{s}, a\right)-\beta_{k}^{s}\right)^{2}
$$

When \hat{V}_{k} linear regression model, the LS problem is a linear LS problem with closed form solution.

The approximate feedback function is given by

$$
\begin{equation*}
\mu_{k}(x)=\underset{u}{\operatorname{argmin}} \tilde{Q}_{k}\left(x, u, a_{k+1}\right) . \tag{4}
\end{equation*}
$$

The choice of samples and regression heavily affects the obtained quality of approximation .

LQ Control

$$
\begin{array}{ll}
\operatorname{minimize} & x_{N}^{T} S x_{N}+\sum_{k=0}^{N-1} x_{k}^{T} S x_{k}+u_{k}^{T} R u_{k} \\
\text { subject to } & x_{k+1}=A x_{k}+B u_{k}, \quad k \in \mathbf{Z}_{N-1}
\end{array}
$$

for given x_{0}, where $x_{k} \in \mathbf{R}^{2}$ and $u_{k} \in \mathbf{R}$.
Consider $\varphi(x)=\left(x_{1}^{2}, x_{2}^{2}, 2 x_{1} x_{2}\right)$, let

$$
\tilde{P}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{3} & a_{2}
\end{array}\right]
$$

and let

$$
\tilde{V}_{k}(x, a)=a^{T} \varphi(x)=x^{T} \tilde{P} x
$$

Hence true value function $V_{k}(x)=x^{T} P_{k} x$ and approximate value function $\tilde{V}_{k}(x, a)$ agree if $\tilde{P}=P_{k}$.

LQ Control ctd.

Approximate Q-function:

$$
\begin{align*}
\tilde{Q}_{k}(x, u, a) & =x^{T} S x+u^{T} R u+(A x+B u)^{T} \tilde{P}(A x+B u) \\
& =\left[\begin{array}{l}
x \\
u
\end{array}\right]^{T}\left[\begin{array}{cc}
S+A^{T} \tilde{P} A & A^{T} \tilde{P} B \\
B^{T} \tilde{P} A & R+B^{T} \tilde{P} B
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right] . \tag{5}
\end{align*}
$$

For $k=N-1$ down to $k=0$ we solve the linear LS problem in (3) to obtain

$$
\begin{aligned}
\beta_{k}^{s} & =\left(x_{k}^{s}\right)^{T}\left\{S+A^{T} \tilde{P}_{k+1} A-A^{T} \tilde{P}_{k+1} B\left(R+B^{T} \tilde{P}_{k+1} B\right)^{-1}\right. \\
& \left.\times B^{T} \tilde{P}_{k+1} A\right\} x_{k}^{s}
\end{aligned}
$$

assuming $R+B^{T} \tilde{P}_{k+1} B$ positive definite. Here $\tilde{P}_{N}=S$.

LQ Control ctd.

We then obtain a_{k} as solution to the linear LS problem

$$
\text { minimize } \frac{1}{2} \sum_{s=1}^{r}\left(\varphi^{T}\left(x_{k}^{s}\right) a-\beta_{k}^{s}\right)^{2}
$$

with variable a. This defines \tilde{P}_{k}. The solution a_{k} satisfies the normal equations

$$
\Phi_{k}^{T} \Phi_{k} a_{k}=\Phi_{k}^{T} \beta_{k},
$$

where

$$
\Phi_{k}=\left[\begin{array}{c}
\varphi^{T}\left(x_{k}^{1}\right) \\
\vdots \\
\varphi^{T}\left(x_{k}^{r}\right)
\end{array}\right] ; \quad \beta_{k}=\left[\begin{array}{c}
\beta_{k}^{1} \\
\vdots \\
\beta_{k}^{r}
\end{array}\right] .
$$

It is here crucial to choose x_{k}^{s} such that $\Phi_{k}^{T} \Phi_{k}$ is invertible. We realize that we need $r \geq 3$ for this hold.
From (4) and (5) we obtain

$$
u_{k}=-\left(R_{k}+B_{k}^{T} \tilde{P}_{k+1} B_{k}\right)^{-1} B_{k}^{T} \tilde{P}_{k+1} A_{k} x_{k}
$$

Finite horizon value iteration for the Q-function

Remember

$$
V_{k}(x)=\min _{u} Q_{k}(x, u)
$$

and hence

$$
V_{k+1}\left(F_{k}(x, \bar{u})\right)=\min _{u} Q_{k+1}\left(F_{k}(x, \bar{u}), u\right)
$$

Add $f_{k}(x, \bar{u})$ to both sides to obtain

$$
Q_{k}(x, \bar{u})=f_{k}(x, \bar{u})+\min _{u} Q_{k+1}\left(F_{k}(x, \bar{u}), u\right), \quad k=N-2, N-3, \ldots, 0
$$

where $Q_{N-1}(x, u)=f_{N-1}(x, u)+\phi\left(F_{N-1}(x, u)\right)$.

Observations

- Iteration for Q-function equivalent to dynamic programming recursion.
- Do not need to know F_{k}.
- Sufficient to be able to evaluate $F_{k}(x, \bar{u})$ using xperiments or digital twin.
- Q-function more complicated than value function V since V only function of x but Q also function of u.

Fitted value iteration for the Q-function

Approximate Q_{k} as

$$
\tilde{Q}_{k}\left(x, u, a_{k}\right)=a_{k}^{T} \varphi(x, u)
$$

for $k \in \mathbf{Z}_{N-1}$ or with an ANN.
Consider samples $\left(x_{k}^{s}, u_{k}^{s}\right)$ and define

$$
\beta_{N-1}^{s}=\phi\left(F_{N-1}\left(x_{N-1}^{s}, u_{N-1}^{s}\right)\right)
$$

and

$$
\begin{equation*}
\beta_{k}^{s}=\min _{u} \tilde{Q}_{k+1}\left(F_{k}\left(x_{k}^{s}, u_{k}^{s}\right), u, a_{k+1}\right) \tag{6}
\end{equation*}
$$

where a_{k+1} is a known value from previous iterate.

- We do not need an analytical expression for F_{k} in order to define β_{k}^{s}.
- Depending on how the feature vectors are chosen the minimization above could become very tractable.

Fitted value iteration for the Q-function ctd.

Define a_{k} as solution to

$$
\begin{equation*}
\operatorname{minimize} \frac{1}{2} \sum_{s=1}^{r}\left(\tilde{Q}_{k}\left(x_{k}^{s}, u_{k}^{s}, a\right)-f_{k}\left(x_{k}^{s}, u_{k}^{s}\right)-\beta_{k}^{s}\right)^{2} \tag{7}
\end{equation*}
$$

with variable a for $k \in \mathbf{Z}_{N-1}$.
The iterations start with $k=N-1$ and goes down to $k=0$, where we alternate between solving (7) and (6).

The approximate optimal control is

$$
\begin{equation*}
u_{k}^{\star}=\mu_{k}(x)=\underset{u}{\operatorname{argmin}} \tilde{Q}_{k}\left(x, u, a_{k}\right) . \tag{8}
\end{equation*}
$$

Remark: We notice that using the Q-function instead of using the value function comes at the price of also having to sample the control signal space.

LQ Control

$$
\begin{array}{ll}
\text { minimize } & x_{N}^{T} S x_{N}+\sum_{k=0}^{N-1} x_{k}^{T} S x_{k}+u_{k}^{T} R u_{k} \\
\text { subject to } & x_{k+1}=A x_{k}+B u_{k}, \quad k \in \mathbf{Z}_{N-1}
\end{array}
$$

for given x_{0}, where $x_{k} \in \mathbf{R}^{2}$ and $u_{k} \in \mathbf{R}$.
Let $\varphi(x, u)=\left(x_{1}^{2}, x_{2}^{2}, u^{2}, 2 x_{1} x_{2}, 2 x_{1} u, 2 x_{2} u\right)$ and

$$
\tilde{Q}_{k}(x, u, a)=a^{T} \varphi(x, u)
$$

With

$$
\left[\begin{array}{cc}
\tilde{P} & \tilde{r} \\
\tilde{r}^{T} & \tilde{q}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} & a_{4} & a_{5} \\
a_{4} & a_{2} & a_{6} \\
a_{5} & a_{6} & a_{3}
\end{array}\right]
$$

we may write

$$
\tilde{Q}_{k}(x, u, a)=\left[\begin{array}{l}
x \tag{9}\\
u
\end{array}\right]^{T}\left[\begin{array}{cc}
\tilde{P} & \tilde{r} \\
\tilde{r}^{T} & \tilde{q}
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right] .
$$

LQ Control ctd.

For $k=N-1$ we define

$$
\beta_{N-1}^{s}=\left(x_{+}^{s}\right)^{T} S x_{+}^{s}
$$

where $x_{+}^{s}=A x_{N-1}^{s}+B u_{N-1}^{s}$. For $k=N-2$ down to $k=0$ we solve the linear LS problem in (6) to obtain

$$
\beta_{k}^{s}=\left(x_{+}^{s}\right)^{T}\left(\tilde{P}_{k+1}-\tilde{r}_{k+1} \tilde{q}_{k+1}^{-1} \tilde{r}_{k+1}^{T}\right) x_{+}^{s}
$$

where $x_{+}^{s}=A x_{k}^{s}+B u_{k}^{s}$.

LQ Control ctd.

We then obtain a_{k} for $k \in \mathbf{Z}_{N-1}$ as the solution to:

$$
\text { minimize } \frac{1}{2} \sum_{s=1}^{r}\left(\varphi^{T}\left(x_{k}^{s}, u_{k}^{s}\right) a-\left(x_{k}^{s}\right)^{T} S x_{k}^{s}-\left(u_{k}^{s}\right)^{T} R u_{k}^{s}-\beta_{k}^{s}\right)^{2} .
$$

The solution a_{k} satisfies the normal equations

$$
\Phi_{k}^{T} \Phi_{k} a_{k}=\Phi_{k}^{T} \gamma_{k}
$$

where

$$
\Phi_{k}=\left[\begin{array}{c}
\varphi^{T}\left(x_{k}^{1}, u_{k}^{1}\right) \\
\vdots \\
\varphi^{T}\left(x_{k}^{r}, u_{k}^{r}\right)
\end{array}\right], \quad \gamma_{k}=\left[\begin{array}{c}
\left(x_{k}^{1}\right)^{T} S x_{k}^{1}+\left(u_{k}^{1}\right)^{T} R u_{k}^{1}+\beta_{k}^{1} \\
\vdots \\
\left(x_{k}^{r}\right)^{T} S x_{k}^{r}+\left(u_{k}^{r}\right)^{T} R u_{k}^{r}+\beta_{k}^{r}
\end{array}\right]
$$

Crucial to choose $\left(x_{k}^{s}, u_{k}^{s}\right)$ such that $\Phi_{k}^{T} \Phi_{k}$ is invertible. We realize that we need $r \geq 6$ for this to hold.

Optimal feedback function is by (8) and (9) given by

$$
\mu_{k}(x)=-\tilde{q}_{k}^{-1} \tilde{r}_{k}^{T} x
$$

