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Optimal Control Problem

J* (o) = minimize J = f(xk, ux)
k=0
subject to 11 = F(wk, ug)

up €U, xp€ X

where z( € X is given.



Bellman Equation

Assume 0 € X,0¢€ U, F(0,0) =0, f(0,0) =0and that f is
strictly positive definite and quadratically bounded. If there
exists a strictly positive definite function V' that satisfies the
Bellman equation

Vie)= omin  Af@u)+VE@W)} @)

then for the optimal control problem in (1) it holds that

(@) V(z) =J*(x)

(b) w* = p(x) = argmin, ey p(puex {f(,u) + V(F(z,u))}is
an optimal feedback control that results in a globally
convergent closed loop system.



Approximation of Value Function

In general difficult to solve Bellman equation to get V.

Guess approximation V, which gives approximate feedback

w=p@)= argmin {fle,0)+ V(F@z.u)} @)
wel, F(zu)eX



One Time-Step Horizon Problem

minimize V (xy41) + f(zx, ug)
subject to x4+ = F(zg, ug)
Uk € U, Trpy1 € X

where zj, € X' is given.
» Can be solved as finite-dimensional optimization problem
» Open loop solution
» Repeated on-line for every k results in feedback

> Called “greedy control” when V() = 0

» Often instability
» Often too large value of J



Finite Time Horizon Approximation

N-1

minimize Jy = Z f (g, ug) (4)
k=0

subject to x;1+1 = F(xg, ug)
up, €U, zxzp€X, any=0

where o € X is given.

>
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Large N implies near optimal solution

zy =0and up =0,k > N implies 2z, =0, Vk > N, i.e.
stability

Can be solved as finite-dimensional optimization problem
Open loop solution

Repeated on-line for every k results in feedback (more
later)



Finite-Dimensional Optimization

Let

_ [T T T T
z=laf o o@loug oo ujy

and define fo(2) = S0 g f(wk, ur),
f(x(]a U(]) — 1
9(z) =

flen—1,un—1) — =N
TN

and the function h : RN(™+™) _, RVP such that h(z) < 0is
equivalenttou, e U fork =0,...,N —1and z; € X, for
k=1,...,N. Then the optimal control problem in (4) is
equivalent to

minimize fo(z) subject to g(z) =0, h(z) <0



Model Predictive Control

For k =0,1,... solve the time k problem

k+N-1

minimize J, = Y f(d, i) (5)
=k

subjectto ;.1 = F (&, ), l=Fk,...,k+ N —1
welU l=k,....,k+N—1
eX, l=k+1,....k+N—-1

TN =0

where &, = xj is given. Denote the solution

Tp g5 Ty Ny Up, - - - U, g @Nd let ug, = @y, The state
evolves as

Th+1 :f(a:k,uk), k=0,1,...

with z( given.



Example

Dynamics: F(z,u) = Az + Bu, where A € R**3 and B € R3*?
random

Incremental cost: f(z,u) =27z + uTu
Constraints: -1 <z, <land -05x1<u,<05x1

Initial value: zo = [0.9 —0.9 O.Q}T.



Optimal Cost
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Finite time horizon approximation—circles, MPC—triangles



Trajectories

Finite horizon N = 3

Finite horizon N = 20

MPC horizon N = 3

(o) (o] (o)
05 05 05
o ° °©
o]
o %9 09
x 0} 0o0O00C00COC00C0C0 0 @o@@ooooooooooooo 0 OWO
O )
OO o )
05 05 05
1 - 1
0 10 20 "o 10 20 "o 10
05 02 0.2
0.1 0.1
oo
o 0l 2000000000000 o}~ dBacoococoacooooo
OO
-0.1 -0} ©
ERN | Jliccececcocovcocs ool [o)
02 02
5 039 -03f,
-0.4 -0.4
_05% ~05¢ —0.56
0 10 20 0 10 20 0 10
K k K

20



Multi-Parametric Programming

17(6) = min, f(z,0)
subj. to g(z,0) <0

where z € R, § € © C R" is a vector of parameters, and where
f:R?"xR"—Randg:R?xR" — R°

Want to solve for all values of 0

Optimal value of z will depend on 6.



KKT Conditions

For convex (for all fixed values of ) multi-parametric programs
KKT conditions are necessary and sufficient conditions for
optimality. i.e. there exist z(0) € R? and A(f) € R® such that

Ve f(2(0),0) + X (O)V: (2(9),

(6)
()
(8)
)

where sub-script i denotes the i:th component of a vector, and
where Z = {1,...,s}.



Multi-Parametric Quadratic Program

Let f = 12THz, and g = Gz — w — S0, where H € R"™*?is a
positive definite symmetric matrix, G € R**? and S € R**".

KKT conditions:
Hz+G'A=0 (10)
Gz <w+ 56 (11)
A>0 (12)
/\i(Giz—wi—SiG):O, i=1,...,8 (13)

where sub-script ¢ denotes the i:th row of a vector or matrix.



Features of Optimal Solution

» Optimizer function z*(0) piecewise affine over polyhedral
subsets of ©

» Value function f*(0) piecewise quadratic over polyhedral
subsets of ©



Explicit MPC

for the case when f is quadratic, F' is linear, and X and U are
described by linear constraints.

» Fedback is piecewise affine over polyhedral partitioning of
the state-space

» Feedback can be computed off-line

» On-line it is only needed to compute which polyhedral
region xy is in

» Stability of MPC self-study



