Optimal Control, Lecture 4: Model Predictive Control (MPC)

Anders Hansson

Division of Automatic Control
Linkoping University

Contents

- Optimal Control Problem
- Dynamic Programming Solution
- Approximation of Value Function
- Finite Time Horizon Approximation
- Finite-Dimensional Optimization
- Model Predictive Control (MPC)
- Multi-Parametric Programming
- Explicit MPC

Optimal Control Problem

$$
\begin{array}{r}
J^{\star}\left(x_{0}\right)=\text { minimize } J=\sum_{k=0}^{\infty} f\left(x_{k}, u_{k}\right) \tag{1}\\
\text { subject to } x_{k+1}=F\left(x_{k}, u_{k}\right) \\
u_{k} \in U, \quad x_{k} \in X
\end{array}
$$

where $x_{0} \in X$ is given.

Bellman Equation

Assume $0 \in X, 0 \in U, F(0,0)=0, f(0,0)=0$ and that f is strictly positive definite and quadratically bounded. If there exists a strictly positive definite function V that satisfies the Bellman equation

$$
\begin{equation*}
V(x)=\min _{u \in U, F(x, u) \in X}\{f(x, u)+V(F(x, u))\} \tag{2}
\end{equation*}
$$

then for the optimal control problem in (1) it holds that
(a) $V(x)=J^{\star}(x)$
(b) $u^{\star}=\mu(x)=\operatorname{argmin}_{u \in U, F(x, u) \in X}\{f(x, u)+V(F(x, u))\}$ is an optimal feedback control that results in a globally convergent closed loop system.

Approximation of Value Function

In general difficult to solve Bellman equation to get V.
Guess approximation \hat{V}, which gives approximate feedback

$$
\begin{equation*}
u=\mu(x)=\underset{u \in U, F(x, u) \in X}{\operatorname{argmin}}\{f(x, u)+\hat{V}(F(x, u))\} \tag{3}
\end{equation*}
$$

One Time-Step Horizon Problem

$$
\begin{aligned}
\operatorname{minimize} & \hat{V}\left(x_{k+1}\right)+f\left(x_{k}, u_{k}\right) \\
\text { subject to } & x_{k+1}=F\left(x_{k}, u_{k}\right) \\
& u_{k} \in U, \quad x_{k+1} \in X
\end{aligned}
$$

where $x_{k} \in \mathcal{X}$ is given.

- Can be solved as finite-dimensional optimization problem
- Open loop solution
- Repeated on-line for every k results in feedback
- Called "greedy control" when $\hat{V}(x)=0$
- Often instability
- Often too large value of J

Finite Time Horizon Approximation

$$
\begin{align*}
& \operatorname{minimize} J_{N}=\sum_{k=0}^{N-1} f\left(x_{k}, u_{k}\right) \tag{4}\\
& \text { subject to } x_{k+1}=F\left(x_{k}, u_{k}\right) \\
& \qquad u_{k} \in U, \quad x_{k} \in X, \quad x_{N}=0
\end{align*}
$$

where $x_{0} \in X$ is given.

- Large N implies near optimal solution
- $x_{N}=0$ and $u_{k}=0, k \geq N$ implies $x_{k}=0, \forall k \geq N$, i.e. stability
- Can be solved as finite-dimensional optimization problem
- Open loop solution
- Repeated on-line for every k results in feedback (more later)

Finite-Dimensional Optimization

Let

$$
z=\left[\begin{array}{llllll}
x_{1}^{T} & \cdots & x_{N}^{T} & u_{0}^{T} & \cdots & u_{N-1}^{T}
\end{array}\right]^{T}
$$

and define $f_{0}(z)=\sum_{k=0}^{N-1} f\left(x_{k}, u_{k}\right)$,

$$
g(z)=\left[\begin{array}{c}
f\left(x_{0}, u_{0}\right)-x_{1} \\
\vdots \\
f\left(x_{N-1}, u_{N-1}\right)-x_{N} \\
x_{N}
\end{array}\right]
$$

and the function $h: \mathbf{R}^{N(m+n)} \rightarrow \mathbf{R}^{N p}$ such that $h(z) \leq 0$ is equivalent to $u_{k} \in U$ for $k=0, \ldots, N-1$ and $x_{k} \in X$, for $k=1, \ldots, N$. Then the optimal control problem in (4) is equivalent to

$$
\text { minimize } f_{0}(z) \text { subject to } g(z)=0, h(z) \leq 0
$$

Model Predictive Control

For $k=0,1, \ldots$ solve the time k problem

$$
\begin{array}{ll}
\operatorname{minimize} & J_{k}=\sum_{l=k}^{k+N-1} f\left(\tilde{x}_{l}, \tilde{u}_{l}\right) \tag{5}\\
\text { subject to } & \tilde{x}_{l+1}=F\left(\tilde{x}_{l}, \tilde{u}_{l}\right), l=k, \ldots, k+N-1 \\
& \tilde{u}_{l} \in U, l=k, \ldots, k+N-1 \\
& \tilde{x}_{l} \in X, l=k+1, \ldots, k+N-1 \\
& \tilde{x}_{k+N}=0
\end{array}
$$

where $\tilde{x}_{k}=x_{k}$ is given. Denote the solution $\tilde{x}_{k+1}^{\star}, \ldots, \tilde{x}_{k+N}^{\star}, \tilde{u}_{k}^{\star}, \ldots, \tilde{u}_{k+N-1}^{\star}$ and let $u_{k}=\tilde{u}_{k}^{\star}$. The state evolves as

$$
x_{k+1}=f\left(x_{k}, u_{k}\right), \quad k=0,1, \ldots
$$

with x_{0} given.

Example

Dynamics: $F(x, u)=A x+B u$, where $A \in \mathbf{R}^{3 \times 3}$ and $B \in \mathbf{R}^{3 \times 2}$ random

Incremental cost: $f(x, u)=x^{T} x+u^{T} u$
Constraints: $\mathbf{- 1} \leq x_{k} \leq \mathbf{1}$ and $-0.5 \times \mathbf{1} \leq u_{k} \leq 0.5 \times \mathbf{1}$
Initial value: $x_{0}=\left[\begin{array}{lll}0.9 & -0.9 & 0.9\end{array}\right]^{T}$.

Optimal Cost

Finite time horizon approximation-circles, MPC—triangles

Trajectories

Multi-Parametric Programming

$$
\begin{array}{cc}
f^{\star}(\theta) \quad & =\min _{z} f(z, \theta) \\
& \text { subj. to } g(z, \theta) \leq 0
\end{array}
$$

where $z \in \mathbf{R}^{q}, \theta \in \Theta \subseteq \mathbf{R}^{r}$ is a vector of parameters, and where $f: \mathbf{R}^{q} \times \mathbf{R}^{r} \rightarrow \mathbf{R}$ and $g: \mathbf{R}^{q} \times \mathbf{R}^{r} \rightarrow \mathbf{R}^{s}$.

Want to solve for all values of θ

Optimal value of z will depend on θ.

KKT Conditions

For convex (for all fixed values of θ) multi-parametric programs KKT conditions are necessary and sufficient conditions for optimality. i.e. there exist $z(\theta) \in \mathbf{R}^{q}$ and $\lambda(\theta) \in \mathbf{R}^{s}$ such that

$$
\begin{align*}
\nabla_{z} f(z(\theta), \theta)+\lambda^{T}(\theta) \nabla_{z} g(z(\theta), \theta) & =0 \tag{6}\\
g(z(\theta), \theta) & \leq 0 \tag{7}\\
\lambda(\theta) & \geq 0 \tag{8}\\
\lambda_{i}(\theta) g_{i}(\theta) & =0, \quad i \in \mathcal{I} \tag{9}
\end{align*}
$$

where sub-script i denotes the i :th component of a vector, and where $\mathcal{I}=\{1, \ldots, s\}$.

Multi-Parametric Quadratic Program

Let $f=\frac{1}{2} z^{T} H z$, and $g=G z-w-S \theta$, where $H \in \mathbf{R}^{q \times q}$ is a positive definite symmetric matrix, $G \in \mathbf{R}^{s \times q}$ and $S \in \mathbf{R}^{s \times r}$.

KKT conditions:

$$
\begin{align*}
H z+G^{T} \lambda & =0 \tag{10}\\
G z & \leq w+S \theta \tag{11}\\
\lambda & \geq 0 \tag{12}\\
\lambda_{i}\left(G_{i} z-w_{i}-S_{i} \theta\right) & =0, \quad i=1, \ldots, s \tag{13}
\end{align*}
$$

where sub-script i denotes the i :th row of a vector or matrix.

Features of Optimal Solution

- Optimizer function $z^{\star}(\theta)$ piecewise affine over polyhedral subsets of Θ
- Value function $f^{\star}(\theta)$ piecewise quadratic over polyhedral subsets of Θ

Explicit MPC

for the case when f is quadratic, F is linear, and X and U are described by linear constraints.

- Fedback is piecewise affine over polyhedral partitioning of the state-space
- Feedback can be computed off-line
- On-line it is only needed to compute which polyhedral region x_{k} is in
- Stability of MPC self-study

