Optimal Control, Lecture 3: Value Iteration and Policy Iteration

Anders Hansson

Division of Automatic Control
Linkoping University

Contents

- Bellman Equation
- Value Iteration (VI)
- Policy Iteration (PI)
- Approximate PI
- Linear Quadratic Control

Infinite Time Horizon Oprimization

$$
\begin{array}{ll}
J^{*}\left(x_{0}\right)=\min & \sum_{k=0}^{\infty} \gamma^{k} f\left(x_{k}, u_{k}\right) \\
\text { subject to } & x_{k+1}=F\left(x_{k}, u_{k}\right) \tag{1}\\
& x_{0} \text { given } \\
& u_{k} \in U\left(x_{k}\right)
\end{array}
$$

with $0<\gamma \leq 1$ discount factor.

Bellman Equation

Assume $0 \in U(0), f(0,0)=0, F(0,0)=0$ and that f is strictly positive definite. If there exists a strictly positive definite V such that the Bellman equation

$$
V(x)=\min _{u \in U(x)}\{f(x, u)+\gamma V(F(x, u))\}
$$

holds, then

- (a) $J^{*}(x)=V(x)$
- (b) The minimizing argument in the Bellman equation is an optimal feedback for (3) that results in a globally convergent closed loop system if γ is sufficiently close to one.

Value Iterations (VI)

Change iteration index in the dynamic programming recursion so that we iterate forward instead:

$$
\begin{equation*}
V_{k+1}(x)=\min _{u \in U(x)}\left\{f_{k}(x, u)+\gamma V_{k}\left(F_{k}(x, u)\right)\right\} \tag{2}
\end{equation*}
$$

with initial value $V_{0}(x)=0$.
If one has a clever guess of an approximate solution to the Bellman equation, this can be used as initial value instead.

VI for LQ Control

$$
\begin{array}{ll}
\min & \sum_{k=0}^{\infty} \gamma^{k}\left(x_{k}^{T} S x_{k}+u_{k}^{T} R u_{k}\right) \\
\text { subject to } & x_{k+1}=A x_{k}+B u_{k} \\
& x_{0} \text { given }
\end{array}
$$

Let $V_{k}(x)=x^{T} P_{k} x$ with $P_{0}=0$. Similarly as in LQ Example in previous lecture

$$
P_{k+1}=S+\gamma A^{T} P_{k} A-\gamma^{2} A^{T} P_{k} B\left(R+B^{T} P_{k} B\right)^{-1} B^{T} P_{k} A
$$

Proof of Convergence

Based on Bellman operator:

$$
\begin{equation*}
T(V)(x)=\min _{u \in U(x)}\{f(x, u)+\gamma V(F(x, u))\} \tag{4}
\end{equation*}
$$

Details on white board.

Policy Iterations (PI)

Bellman policy operator:

$$
\begin{equation*}
T_{\mu}(V)(x)=f(x, \mu(x))+\gamma V(F(x, \mu(x))) \tag{5}
\end{equation*}
$$

for a given function μ.

Iterate starting with initial μ_{0} :

1. Solve (policy evaluation step)

$$
\begin{equation*}
V_{k}(x)=T_{\mu_{k}}\left(V_{k}\right)(x) \tag{6}
\end{equation*}
$$

2. Solve (policy improvement step)

$$
\begin{equation*}
\mu_{k+1}(x)=\underset{u \in U(x)}{\operatorname{argmin}}\left\{f(x, u)+\gamma V_{k}(F(x, u))\right\} . \tag{7}
\end{equation*}
$$

Proof of convergence on white board.

LQ Control

Guess that $V_{k}(x)=x^{T} P_{k} x$ and that $\mu_{k}(x)=-L_{k} x$.
Policy evaluation step:

$$
x^{T} P_{k} x=x^{T} S x+x^{T} L_{k}^{T} R L_{k} x+\gamma x^{T}\left(A-B L_{k}\right)^{T} P_{k}\left(A-B L_{k}\right) x
$$

for given L_{k}. Solution from Lyapunov equation

$$
P_{k}-\gamma\left(A-B L_{k}\right)^{T} P_{k}\left(A-B L_{k}\right)=S+L_{k}^{T} R L_{k},
$$

Policy improvement step:
$\mu_{k+1}(x) \underset{u}{\operatorname{argmin}}\left\{x^{T} S x+u^{T} R u+\gamma(A x-B u)^{T} P_{k}(A x-B u)\right\}$.
with solution $\mu_{k+1}(x)=-L_{k+1} x$, where

$$
L_{k+1}=\gamma\left(R+\gamma B^{T} P_{k} B\right)^{-1} B^{T} P_{k} A .
$$

Approximate Evaluation of V_{k}

It holds that (6) implies

$$
\begin{aligned}
V_{k}\left(x_{0}\right) & =f\left(x_{0}, \mu_{k}\left(x_{0}\right)\right)+\gamma V_{k}\left(F\left(x_{0}, \mu_{k}\left(x_{0}\right)\right)\right) \\
& =f\left(x_{0}, \mu_{k}\left(x_{0}\right)\right)+\gamma V_{k}\left(x_{1}\right) \\
& =f\left(x_{0}, \mu_{k}\left(x_{0}\right)\right)+\gamma f\left(x_{1}, \mu_{k}\left(x_{1}\right)\right)+\gamma^{2} V_{k}\left(x_{2}\right) \\
& \vdots \\
& =\sum_{i=0}^{N-1} \gamma^{i} f\left(x_{i}, \mu_{k}\left(x_{i}\right)\right)+\gamma^{N} V_{k}\left(x_{N}\right)
\end{aligned}
$$

where $x_{i+1}=F\left(x_{i}, \mu_{k}\left(x_{i}\right)\right)$.
In case N is large and μ_{k} is stabilizing we have that x_{N} is close to zero and that also $V_{k}\left(x_{N}\right)$ is close to zero.

Approximate evaluation of $V_{k}\left(x_{0}\right)$ obtained by simulating the dynamical system and add up the incremental costs.

Approximation of V

Let

$$
\beta_{k}^{s}=\sum_{i=0}^{N-1} \gamma^{i} f\left(x_{i}, \mu_{k}\left(x_{i}\right)\right),
$$

where $x_{i+1}=F\left(x_{i}, \mu_{k}\left(x_{i}\right)\right), x_{0}=x^{s}, 1 \leq s \leq r$.
Let $\tilde{V}(x, a)$ be a linear regression or an Aritifical Neural Network (ANN) with parameter a that should approximate V_{k} in (6).

Find the approximation of V_{k} by solving

$$
\text { minimize } \frac{1}{2} \sum_{s=1}^{r}\left(\tilde{V}\left(x^{s}, a\right)-\beta_{k}^{s}\right)^{2}
$$

with variable a. The solution is denoted a_{k}. Then perform exact policy improvement step

$$
\begin{equation*}
\mu_{k+1}(x)=\underset{u \in U(x)}{\operatorname{argmin}}\left\{f(x, u)+\gamma \tilde{V}\left(F(x, u), a_{k}\right)\right\} . \tag{9}
\end{equation*}
$$

Approximate LQ Control

Assume one input and two states and let
$\varphi(x)=\left(x_{1}^{2}, x_{2}^{2}, 2 x_{1} x_{2}\right) .{ }^{1}$ Let

$$
\tilde{V}(x, a)=a^{T} \varphi(x)
$$

With

$$
\tilde{P}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{3} & a_{2}
\end{array}\right]
$$

we have

$$
\tilde{V}(x, a)=x^{T} \tilde{P} x
$$

Hence true value function $V(x)=x^{T} P x$ and approximate value function $\tilde{V}(x, a)$ agree if $\tilde{P}=P$.

[^0]
Approximate LQ Control

With an abuse of notation $a_{k} \in \mathbf{R}^{3}$, which defines \tilde{P}_{k}, is obtained as solution to Least Squares (LS) problem

$$
\operatorname{minimize} \frac{1}{2} \sum_{s=1}^{r}\left(\varphi^{T}\left(x^{s}\right) a-\beta_{k}^{s}\right)^{2}
$$

with variable a. The solution a_{k} satisfies normal equations

$$
\Phi_{k}^{T} \Phi_{k} a_{k}=\Phi_{k}^{T} \beta_{k},
$$

where

$$
\Phi_{k}=\left[\begin{array}{c}
\varphi^{T}\left(x^{1}\right) \\
\vdots \\
\varphi^{T}\left(x^{r}\right)
\end{array}\right], \quad \beta_{k}=\left[\begin{array}{c}
\beta_{k}^{1} \\
\vdots \\
\beta_{k}^{r}
\end{array}\right],
$$

and where

$$
\beta_{k}^{s}=\sum_{i=0}^{N-1} \gamma^{i}\left(x_{i}^{T} S x_{i}+\mu_{k}\left(x_{i}\right)^{T} R \mu_{k}\left(x_{i}\right)\right),
$$

and where $x_{i+1}=A x_{i}+B \mu_{k}\left(x_{i}\right)$ with initial values x^{s}.

Approximate LQ Control

It is crucial to choose x^{s} such that $\Phi_{k}^{T} \Phi_{k}$ is invertible, which holds if $r \geq 3$.

We define

$$
\begin{align*}
\tilde{Q}_{k}(x, u, a) & =f(x, u)+\gamma \tilde{V}(A x+B u, a) \\
& =x^{T} S x+u^{T} R u+\gamma(A x+B u)^{T} \tilde{P}(A x+B u) \tag{10}\\
& =\left[\begin{array}{l}
x \\
u
\end{array}\right]^{T}\left[\begin{array}{cc}
S+\gamma A^{T} \tilde{P} A & \gamma A^{T} \tilde{P} B \\
\gamma B^{T} \tilde{P} A & R+\gamma B^{T} \tilde{P} B
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right] .
\end{align*}
$$

She solution to (9) is given by

$$
\mu_{k+1}(x)=\underset{u}{\operatorname{argmin}} \tilde{Q}_{k}\left(x, u, a_{k}\right)=-\gamma\left(R+\gamma B^{T} \tilde{P}_{k} B\right)^{-1} B^{T} \tilde{P}_{k} A x
$$

assuming $R+\gamma B^{T} \tilde{P}_{k} B$ positive definite. Hence

$$
\mu_{k+1}(x)=-L_{k+1} x
$$

where $L_{k+1}=\gamma\left(R+\gamma B^{T} \tilde{P}_{k} B\right)^{-1} B^{T} \tilde{P}_{k} A$.

[^0]: ${ }^{1}$ Notice that the indices refer to components of the vector and not to time.

