
Optimal Control, Lecture 11: Numerical

Solutions

Anders Hansson

Division of Automatic Control
Linkoping University



Contents

◮ Gradient method

◮ Shooting method

◮ Discretization method

◮ Collocation method

◮ Multiple shooting method



Two Categories of Methods

We must often resort to numerical solutions when solving

optimal control problems.

1. Indirect methods: Solving the necessary conditions of

PMP by integrating the differential equations in a recursive

manner.

2. Direct methods: Solving a discretization of the optimal

control problem in directly.



Indirect Methods

1. Shooting method: The TPBVP is solved by integrating the

dynamical equations forward in time using an ODE solver.

2. Gradient method: The dynamical equation relating the

control signal and the state is integrated forward in time,

and the adjoint equation is integrated backward in time,

using an ODE solver.



Direct Methods

All methods based on approximating the control signal as, e.g.,

piecewise constant or as a polynomial.

1. Discretization method: Euler forward difference for

approximating state trajectory.

2. Collocation method: Use polynomial approximations to

approximate the state trajectory.

3. Multiple shooting method: Explicitly make use of an

ODE solver to compute the state trajectory.

All methods rely on an efficient nonlinear programming solver

at the top level to optimize the control signal parameters.



Numerical Algorithms Needed

◮ Integration of ODEs, e.g. ode45

◮ Finding roots of systems of nonlinear equations, e.g.

fsolve

◮ Solving finite-dimensional optimization problems, e.g.

fmincon



The Gradient Method

minimize φ (x(T )) +

∫

T

0

f (t, x(t), u(t)) dt

subject to ẋ(t) = F (t, x(t), u(t))

(1)

It can be shown that the gradient of the objective function with

respect to u(t) is given by

∂H(t, x(t), u(t), λ(t))

∂u

for any x(t) as long as λ(t) satisfies the adjoint equation

λ̇(t) = −
∂H(t, x⋆(t), u⋆(t), λ(t))

∂x
, λ(T ) =

∂φ(x⋆(T ))

∂x



Algorithm for Gradient Method
1. Guess an initial value for the control signal u(t), t ∈ [0, T ].

2. Solve

ẋ(t) = F (t, x(t), u(t)) , x(0) = x0

using an ODE solver.

3. Solve

λ̇(t) = −
∂H(t, x(t), u(t), λ(t))

∂x
, λ(T ) =

∂φ(x(T ))

∂x

using an ODE solver.

4. Update u(t) as

u(t)← u(t)− α
∂H(t, x(t), u(t), λ(t))

∂u

5. Repeat steps 2–4 until

∫

T

0

∣

∣

∣

∣

∂H(t, x(t), u(t), λ(t))

∂u

∣

∣

∣

∣

2

dt

is small enough.



Pros and cons

(+) It gives good improvement in the first iterations.

(+) Stability is good since integration of x and λ performed in

stable directions.

(+) Control constraints can be taken into account by projecting

onto the control constraint set.

(+) It was used to solve a large number of aeronautical

problems in the 1960s.

(−) The step size α has to be chosen with care.

(−) Convergence tends to be slow.



The Shooting Method

Solves TPBV problem resulting from PMP:

ẋ = F (x, µ(x, λ̃)), x(0) ∈ S0, x(T ) ∈ ST

λ̇ = −
∂H(x, µ(x, λ̃), λ̃)

∂x
, λ(0) ⊥ S0, λ(T )−

∂φ(x(T ))

∂x
⊥ ST

(2)

where

S0 = {x ∈ Rn : G0(x) = 0} , ST = {x ∈ Rn : GT (x) = 0}



The Shooting Method ctd.

Assume we can summarize what we know about the initial and

final values in nonlinear equations

G0(x(0), λ(0)) = 0, GT (x(T ), λ(T )) = 0

Define G : Rn × Rn → Rn × Rn that takes as input the initial

values (x(0), λ(0)), integrates the differential equations, and

outputs the final values (x(T ), λ(T )). (Can be implemented in

Matlab using an ODE solver like ode45)

Solve

G0(x(0), λ(0)) = 0

GT (G(x(0), λ(0))) = 0.

using e.g. fsolve



Minimization of Hamiltonian

In case minimum of Hamiltonian obtained when partial

derivative is zero, then this equation can be added to the

differential equations in (2), i.e., we consider

ẋ = F (x, u), x(0) ∈ S0, x(T ) ∈ ST

λ̇ = −
∂H(x, u, λ̃)

∂x
, λ(0) ⊥ S0, λ(T )−

∂φ(x(T ))

∂x
⊥ ST

∂H
(

x, u, λ̃
)

∂u
= 0

(3)

instead of (2) when we define the function G. The equation

above is not an ODE, but a differential algebraic equation

(DAE) which in MATLAB can be solved with, e.g., ode15i.



Pros and cons

(+) Conceptually simple. It was used to launch sattelites in the

1950s.

(+) Control constraints can be taken care of, but we need to

carry out the minimization of the Hamiltonian at each step

of the ODE/DAE solver, and this would require us to write

special purpose code.

(−) It can be crucial to find a good initial estimate of λ(0).

(−) Integration of the differential equations can be severely

unstable.



The Discretization Method

minimize φ (x(T )) +

∫

T

0

f (t, x(t), u(t)) dt

subject to ẋ(t) = F (t, x(t), u(t))

x(0) ∈ S0, x(T ) ∈ ST

u(t) ∈ U ⊂ Rm

T ≥ 0

(4)



Approximations
Define a partitioning of time interval [0, T ] as

0 = t0 ≤ t1 ≤ · · · ≤ tN = T

in N intervals [ti, ti+1], and let hi = ti+1 − ti. Often hi = T/N .

Approximate u(t) for t ∈ [ti, ti+1] as u(t) = ui ∈ Rm.

Approximate the derivative of the state with

ẋ(t) ≈
x(ti+1)− x(ti)

hi
, t ∈ [ti, ti+1].

resulting with xi = x(ti) in

xi+1 = xi + hiF (ti, xi, ui),

Approximate objective function as

φ(xN ) +
N−1
∑

i=0

hif(ti, xi, ui).



Approximate Discrete-Time Optimal Control Problem

minimize φ(xN ) +

N−1
∑

i=0

hif(ti, xi, ui)

subject to xi+1 = xi + hiF (ti, xi, ui), i ∈ ZN−1

x0 ∈ S0, xN ∈ ST

ui ∈ U ⊂ Rm.

with variables x = (x0, . . . , xN ), and u = (u0, . . . , uN−1).



Finite Dimensional Nonlinear Program (NLP)
Define F0(x, u) = φ(xN ) +

∑

N−1

i=0
hif(ti, xi, ui).

Assume u ∈ U × U × · · · × U can be described as F(u) � 0.

Assume x0 ∈ S0 and xN ∈ ST can be described as

G0(x0) = 0, GT (xN ) = 0

Let

H(x, u) =















x1 − x0 − h0F (t0.x0, u0)
...

xN − xN−1 − hN−1F (tN−1, xN−1, uN−1)
G0(x0)
GT (xN )















.

Then with variables x and u

minimize F0(x, u)

subject to F(u) � 0, H(x, u) = 0



Pros and cons

(+) Exists many good software packages for nonlinear

programming.

(+) Lot of structure in NLP that can be utilized .
◮ The objective and constraint derivatives in the NLP will be

sparse and have block structure.
◮ Can use Riccati recursions to compute search directions.

(+) More sophisticated discretizations can be used, e.g.

Runge-Kutta.

(−) There are many variables and constraints in the NLP

(−) The approximate solution may not converge to the true

solution as h→ 0.

(−) Physical insight we have in continuous time formulation

might get lost.



The Multiple Shooting Method—The Control Signal

Use similar ideas as in the discretization method, but more

accurate approximations.

Let ϕi : R× Rki → Rm and

u(t) = ϕi(t, ai), t ∈ [ti, ti+1].

The vector ai parameterizes the function, and these vectors will

be optimization variables.

We collect them in the vector a ∈ Rk, where k =
∑

N−1

i=0
ki.

The functions ϕi could be constants as in the previous

subsection, and then ai = ui, but we can also define affine

functions, general polynomials or orthogonal basis functions.



The Shooting

We define initial values si, i ∈ ZN−1, and we then use an ODE

solver to integrate the N differential equations

ẋ(t) = F (t, x(t), ϕi(t, ai)), x(ti) = si, i ∈ ZN−1

over the intervals [ti, ti+1].

We denote with abuse of notation the solutions by x(t, ai, si) for

t ∈ [ti, ti+1].

In order to ensure continuity of the solutions we introduce

matching conditions

h(si, ai, si+1) = si+1 − x(ti+1, ai, si) = 0.



Objective Function

We also use an ODE solver to solve the differential equations

J̇(t) = f(t, x(t, ai, si), ϕi(t, ai)), J(ti) = 0

over the intervals [ti, ti+1]. We denote with an abuse of notation

the solutions by Ji(t, si, ai) for t ∈ [ti, ti+1].

Objective function in (4) approximated as

F0(s, a) = φ(sN ) +
N−1
∑

i=1

Ji(ti+1, si, ai)



Constraints
The constraint u(t) ∈ U for all t ∈ [0, T ] is sampled at each time

ti, and expressed as F i(ai) � 0 and collected in

F(a) =







F0(a0)
...

FN−1(aN−1)






. (5)

As for previous method assume that the functions G0 and GT

can be used to describe the constraints on initial state and final

state. All equality constraints can be described using the

function

H(s, a) =



















h(s0, a0, s1)
h(s1, a1, s2)

...

h(sN−1, aN−1, sN )
G0(s0)
GT (sN )



















.



Finite Dimensional NLP

minimize F0(s, a)

subject to F(a) � 0

H(s, a) = 0

with variables s and a.



Pros and Cons

(+) The above optimization problem is also a finite dimensional

optimization problem.

(−) Here we are not able to compute analytical derivatives of

the functions defining the optimization problem.

(+) However, often ODE solvers can deliver also derivatives of

the solutions with respect to (a, s).

(+) The fact that the differential equations can be solved in

parallel can be used to speed up the solver.

(+) Straightforward to generalize to the case when there are

inequality constraints related to the states x.



The Collocation Method

◮ Consider the optimal control problem in (4).

◮ Merge ideas from discretization method and from multiple

shooting method.

◮ Same approximation of the control signal as in multiple

shooting method.

◮ Numerical integration of differential equation is replaced by

representing state as a cubic polynomial, which is more

accurate than using forward Euler approximation of

discretization method



State Approximation
Let

xa(t) =
3

∑

k=0

cik

(

t− ti
hi

)k

for t ∈ [ti, ti+1], where ci
k
∈ Rn are coefficients of the vector

valued polynomial.

Polynomial has to agree with the true state x(t) and its

derivative ẋ(t) at the endpoints of the interval:

xa(ti) = xi

xa(ti + 1) = xi+1

ẋa(ti) = F (ti, xi, ui)

ẋa(ti+1) = F (ti+1, xi+1, ui+1),

where

ẋa(t) =
3

∑

k=1

kci
k

hi

(

t− ti
hi

)k−1

.



Solution

ci0 = xi

ci1 = hiFi

ci2 = −3xi − 2hiFi + 3xi+1 − hiFi+1

ci3 = 2xi + hiFi − 2xi+1 + hiFi+1,

where Fi = F (ti, xi, ui), and where xi = x(ti),
ui = u(ti) = ϕi(ti, ai) and hi = ti+1 − ti as before.

The differential equation is satisfied at the endpoints of the

interval by construction of the coefficients of the polynomials.



Midpoint Constraints and Objective Function

Depending on dimension of ai we can try to enforce the

differential equation to hold at one or several points inside the

interval [ti, ti+1].

Here we use center point tc
i
= (ti + ti+1)/2, which results in the

constraints

ẋa(t
c

i ) = F (tci , xa(t
c

i ), ϕi(t
c

i , ai)).

This constraint involves the variables xi, xi+1 and ai and is just

a nonlinear equation in these variables.

Objective function is approximated using center points as

φ(xN ) +
N−1
∑

i=0

hif(t
c

i , xa(t
c

i ), ϕi(t
c

i , ai)).



Discrete-Time Optimal Control Problem

minimize φ(xN ) +
N−1
∑

i=0

hif(t
c

i , xa(t
c

i ), ϕi(t
c

i , ai))

subject to ẋa(t
c

i ) = F (tci , xa(t
c

i ), ϕi(t
c

i , ai))

G0(x0) = 0, GT (xN ) = 0

ϕ(ti, ai) ∈ U ⊂ Rm

with variables x = (x0, . . . , xN ) and a = (a0, . . . , aN−1), where

we as before assume that the constraint involving the control

signal can be written as inequalities involving a function as in

(5).

The variables x and a are implicitly present in xa and ẋa.



Pros and Cons

(+) The above optimization problem is also a finite dimensional

optimization problem.

(+) Here we are able to compute analytical derivatives w.r.t.

(x, a) of the functions defining the optimization problem.

(−) The cubical approximation of the state might be less

accurate as compared to the numerical integration of the

state performed in the multiple shooting method.

(+) More general collocation methods involving orthogonal

polynomials may be used.



Software

There are dedicated solvers for optimal control problems like

ACADO, and CasADi.


