Optimal Control, Lecture 10: Generalizations of the PMP

Anders Hansson

Division of Automatic Control Linkoping University

Contents

- Optimal control problem
- Hamiltonian
- PMP for general case
- Solution procedure
- Examples

Optimal Control Problem

minimize
$$\phi(x(T)) + \int_0^T f(x(t), u(t)) dt$$

subject to $\dot{x}(t) = F(x(t), u(t))$
 $x(0) \in S_0, \quad x(T) \in S_T$
 $u(t) \in U \subset \mathbf{R}^m$
 $T \ge 0$
(1)

with variables x, u, and T, where $f : \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$, $F : \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ and $\phi : \mathbf{R}^n \to \mathbf{R}$ are continuously differentiable. The sets S_0 and S_T are subsets of \mathbf{R}^n and *manifolds*. We assume

$$S_0 = \{x \in \mathbf{R}^n : G_0(x) = 0\},\$$

where $G_0 : \mathbf{R}^n \to \mathbf{R}^p$ with $p \le n$ is differentiable with a full rank Jacobian for x in a neighborhood of the optimal solution point on S. We assume a similar description of S_T with a function G_T .

Hamiltonian

Define the Hamiltonian $H : \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^{n+1} \to \mathbf{R}$ as $H(x, u, \tilde{\lambda}) = \lambda_0 f(x, u) + \lambda^T F(x, u),$ where $\tilde{\lambda} = (\lambda_0, \lambda).$

PMP General Case

Assume that $(x^{\star}, u^{\star}, T^{\star})$ are optimal for the optimal control problem above. Then there exist a nonzero adjoint function $\tilde{\lambda} : [0, T] \rightarrow \mathbf{R}^{n+1}$ such that

(i)
$$\dot{\lambda}(t) = -\frac{\partial H(x^{\star}(t), u^{\star}(t), \tilde{\lambda}(t))}{\partial x}$$
, $\lambda_0 = c \ge 0$, where $c \in \mathbf{R}$ is a constant

(ii)
$$H(x^{\star}(t), u^{\star}(t), \tilde{\lambda}(t)) = \min_{v \in U} H(x^{\star}(t), v, \tilde{\lambda}(t)) = 0, \ \forall t \in [0, T^{\star}]$$

 $\begin{array}{ll} \text{(iii)} & \lambda(0) \perp S_0 \\ \text{(iv)} & \lambda(T) - \frac{\partial \phi(x^\star(T^\star))}{\partial x} \perp S_T \end{array} \end{array}$

Comments

Above we have used the notation $\lambda_0 \perp S_0$ to mean that $\lambda(0)^T v = 0$ for all v such that $\frac{\partial G_0(x(0))}{\partial x^T} v = 0$, where G_0 is the function defining the manifold S_0 .

In case the final time T is not optimized, then condition (ii) is replaced with that the Hamiltonian is constant and not necessarily zero along the optimal solution.

For many problems it turns out that $\lambda_0 > 0$, and then since *H* is homogeneous in $\tilde{\lambda}$ there is no loss in generality to take $\lambda_0 = 1$.

Solution Procedure

1. Define Hamiltonian $H(x, u, \tilde{\lambda}) = \lambda_0 f(x, u) + \lambda^T F(x, u)$.

2. Let $u^{\star} = \mu(x,\tilde{\lambda}) = \operatorname{argmin} H(x,u,\tilde{\lambda})$

3. Substitute u^* into the dynamical equations for x and $\tilde{\lambda}$, *i.e.*,

$$\dot{x} = F(x, \mu(x, \tilde{\lambda})), \quad x(0) \in S_0, \ x(T) \in S_T$$
$$\dot{\lambda} = -\frac{\partial H(x, \mu(x, \tilde{\lambda}), \tilde{\lambda})}{\partial x}, \quad \lambda(0) \perp S_0, \ \lambda(T) - \frac{\partial \phi(x(T))}{\partial x} \perp S_T$$
(2)

u

Comments

- The two point boundary problem in (2) is in general not easy to solve
- Also use $H(x^{\star}(t), u^{\star}(t), \tilde{\lambda}(t)) = \min_{v \in U} H(x^{\star}(t), v, \tilde{\lambda}(t)) = 0, \forall t \in [0, T^{\star}]$ if possible.
- ► To carry out the parametric optimization of *H* can be very difficult, especially when *u* is constrained by the set *U*.
- Remember that the PMP are only necessary conditions for optimality.
- Hence they may not provide enough information to uniquely determine the optimal control.
- Moreover, they do not guarantee optimality, but only stationarity.
- Further investigations are necessary to prove that a candidate solution obtained from the PMP is indeed optimal.

On white board.