Optimal Control, Lecture 10: Generalizations of the PMP

Anders Hansson

Division of Automatic Control
Linkoping University

Contents

- Optimal control problem
- Hamiltonian
- PMP for general case
- Solution procedure
- Examples

Optimal Control Problem

$$
\begin{array}{cl}
\text { minimize } & \phi(x(T))+\int_{0}^{T} f(x(t), u(t)) d t \\
\text { subject to } & \dot{x}(t)=F(x(t), u(t)) \\
& x(0) \in S_{0}, \quad x(T) \in S_{T} \\
& u(t) \in U \subset \mathbf{R}^{m} \tag{1}\\
& T \geq 0
\end{array}
$$

with variables x, u, and T, where $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$, $F: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ and $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are continuously differentiable. The sets S_{0} and S_{T} are subsets of \mathbf{R}^{n} and manifolds. We assume

$$
S_{0}=\left\{x \in \mathbf{R}^{n}: G_{0}(x)=0\right\}
$$

where $G_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ with $p \leq n$ is differentiable with a full rank Jacobian for x in a neighborhood of the optimal solution point on S. We assume a similar description of S_{T} with a function G_{T}.

Hamiltonian

Define the Hamiltonian $H: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ as

$$
H(x, u, \tilde{\lambda})=\lambda_{0} f(x, u)+\lambda^{T} F(x, u)
$$

where $\tilde{\lambda}=\left(\lambda_{0}, \lambda\right)$.

PMP General Case

Assume that $\left(x^{\star}, u^{\star}, T^{\star}\right)$ are optimal for the optimal control problem above. Then there exist a nonzero adjoint function $\tilde{\lambda}:[0, T] \rightarrow \mathbf{R}^{n+1}$ such that
(i) $\dot{\lambda}(t)=-\frac{\partial H\left(x^{\star}(t), u^{\star}(t), \tilde{\lambda}(t)\right)}{\partial x}, \lambda_{0}=c \geq 0$, where $c \in \mathbf{R}$ is a constant
(ii) $H\left(x^{\star}(t), u^{\star}(t), \tilde{\lambda}(t)\right)=\min _{v \in U} H\left(x^{\star}(t), v, \tilde{\lambda}(t)\right)=0, \forall t \in$ $\left[0, T^{\star}\right]$
(iii) $\lambda(0) \perp S_{0}$
(iv) $\lambda(T)-\frac{\partial \phi\left(x^{\star}\left(T^{\star}\right)\right)}{\partial x} \perp S_{T}$

Comments

Above we have used the notation $\lambda_{0} \perp S_{0}$ to mean that $\lambda(0)^{T} v=0$ for all v such that $\frac{\partial G_{0}(x(0))}{\partial x^{T}} v=0$, where G_{0} is the function defining the manifold S_{0}.

In case the final time T is not optimized, then condition (ii) is replaced with that the Hamiltonian is constant and not necessarily zero along the optimal solution.

For many problems it turns out that $\lambda_{0}>0$, and then since H is homogeneous in $\tilde{\lambda}$ there is no loss in generality to take $\lambda_{0}=1$.

Solution Procedure

1. Define Hamiltonian $H(x, u, \tilde{\lambda})=\lambda_{0} f(x, u)+\lambda^{T} F(x, u)$.
2. Let

$$
u^{\star}=\mu(x, \tilde{\lambda})=\underset{u}{\operatorname{argmin}} H(x, u, \tilde{\lambda})
$$

3. Substitute u^{\star} into the dynamical equations for x and $\tilde{\lambda}$, i.e.,

$$
\begin{align*}
& \dot{x}=F(x, \mu(x, \tilde{\lambda})), \quad x(0) \in S_{0}, x(T) \in S_{T} \\
& \dot{\lambda}=-\frac{\partial H(x, \mu(x, \tilde{\lambda}), \tilde{\lambda})}{\partial x}, \quad \lambda(0) \perp S_{0}, \lambda(T)-\frac{\partial \phi(x(T))}{\partial x} \perp S_{T} \tag{2}
\end{align*}
$$

Comments

- The two point boundary problem in (2) is in general not easy to solve
- Also use $H\left(x^{\star}(t), u^{\star}(t), \tilde{\lambda}(t)\right)=\min _{v \in U} H\left(x^{\star}(t), v, \tilde{\lambda}(t)\right)=$ $0, \forall t \in\left[0, T^{*}\right]$ if possible.
- To carry out the parametric optimization of H can be very difficult, especially when u is constrained by the set U.
- Remember that the PMP are only necessary conditions for optimality.
- Hence they may not provide enough information to uniquely determine the optimal control.
- Moreover, they do not guarantee optimality, but only stationarity.
- Further investigations are necessary to prove that a candidate solution obtained from the PMP is indeed optimal.

Examples

On white board.

