
Optimal Control - Homework Exercise 3

November 1, 2023

In this homework exercise two different problems will be considered, first the
so called Zermelo problem where the problem is to steer a boat in streaming
water, and then a problem where the thrust angle is controlled to obtain the
maximum orbit radius of a space shuttle. The task is to apply different numerical
methods to solve these optimal control problems. The two problems are similar
in the sense that an angle is the control variable in both problems, but in practise
the latter problem is more difficult to treat since it includes constraints on the
final states.

Discretization, gradient and shooting methods will be used, as well as the
CasADi toolbox. You must write the files of the Zermelo problem by yourself,
but for the second problem all needed files can be downloaded, but some lines
of code are missing (indicated by three question marks ???). Even though much
code is available to save time, it is important that you understand the overall
algorithms so that you will be able to solve optimal control problems from
scratch if you have to.

Present your results in a brief report (pdf or hand-written) where answers to
the exercises and your conclusions, plots, etc., are included. The report (pdf or
hand-written) and all m-files must be compressed (zip or tar.bz2) and emailed
to the teaching assistant.

1 The Zermelo Problem

A ship is traveling with constant speed w, with respect to the water, through a
region where the velocity of the water current is parallel to the x-axis and varies
with y. The dynamic ship model can be expressed as(

ẋ(t)
ẏ(t)

)
= F (X(t), θ(t)) =

(
w cos(θ) + v(y)

w sin(θ)

)
(1)

where X = (x y)T is the position of the ship and θ is the heading angle of the
ship relative to the x-axis.

Figure 1: The Zermelo problem in Section 1. Maximize the travel distance in
the x-direction by steering the ship. The speed of the water current is dependent
on the distance from the shore at y = 0.

This problem is a maximum range problem where we want to maximize the
travel distance in the x direction. Assume that the initial position of the ship is
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X0 = (0 0)T and that the water current is linear with respect to y, i.e. v(y) = y.
Then, the problem can be formulated as

min
θ(t), 0≤t≤tf

J = −x(tf )

s.t. ẋ(t) = w cos(θ(t)) + y(t)

ẏ(t) = w sin(θ(t))

x(0) = 0

y(0) = 0

(2)

where tf is fixed and the optimal solution is

θ(t) = arctan(tf − t). (3)

1.1 Analytical solution

(a) Write down the Hamiltonian H and calculate and solve the adjoint equa-
tions.

(b) Compute ∂H
∂θ , the partial derivative of the Hamiltonian w.r.t. θ.

(c) Show that (3) is a minimal solution to the problem (2).

(d) Plot the optimal trajectory by using an ODE (e.g. ode23) solver in Matlab.
Use tf = 1 and w = 1. What is the numerical optimal objective value?

1.2 Discretization method solution

We will now use a discretization method to solve the problem in Matlab, read
Section 7.5.3 in the book [1]. You must write the main script and the functions
by yourself, but exercise 7.11 in the book [1] can be used as a template.

Define the optimization parameter vector as

Y =
(
X[0]T θ[0] X[1]T θ[1] ... X[N − 1]T θ[N − 1] X[N ]T θ[N ]

)T
. (4)

and the optimization problem is expressed as the constrained problem

min
y

F0(Y ) (5)

s.t. H(Y ) = 0. (6)

where
F0(Y ) = −x(tf ) (7)

and

H(Y ) =


h1(Y )
h2(Y )
h3(Y )

...
hN+1(Y )

 =


X[0]−Xi

X[1]− F̄ (X[0], θ[0])
X[2]− F̄ (X[1], θ[1])

...
X[N ]− F̄ (X[N − 1], θ[N − 1])

 (8)

(a) Let T denote the sample time and use tf = 1. Derive a discrete-time model
of (1)

X[k + 1] = F̄ (X[k], θ[k]), (9)

where
v(y) = y, w = 1

and X[k] = X(kT ), by using the Euler-approximation.

(b) Write a script and functions that solves the discrete-time version of the
problem with the Matlab function fmincon. Use the discrete-time model
derived in (a) to define the non-linear constraints and define a discrete-time
version of the objective function. Also compute the gradients of the con-
straint and the objective function, respectively. The gradient is the second
output argument of the functions. To tell the optimization function to use
the gradient set the optimization parameters GradObj and GradConstr to
’on’, see below.
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options = optimset(’fmincon’);

options = optimset(options, ’Algorithm’,’interior-point’);

options = optimset(options, ’GradObj’,’on’);

options = optimset(options, ’GradConstr’,’on’);

options = optimset(options, ’MaxFunEvals’,15000);

[X,fval] = fmincon(@zermeloCostCon, X0, [], [], ...

Aeq, Beq, [], [], @zermeloNonlcon, options, T);

(c) Compares the solution to the optimal solution in Section 1.1. What is the
numerical value of the cost?

(d) Set GradObj and GradConstr to ’off’ and run the script. Make comments
about the result and the computation time and explain the difference.

1.3 Gradient method

A gradient search approach will next be used to solve the problem. Read Sec-
tion 7.5.1 in the book [1]. Use the files in exercise 7.13 in the book [1] as
templates.

(a) Solve the problem by using a gradient search approach based on the time-
continuous model in (1), the adjoint equations from 1.1 (a), and the gradient
expression from 1.1 (b). As above, use tf = 1. Hint: You might need to
increase the stepsize α for the algorithm to converge

(b) What is the numerical value of the cost? Compare the solution to the solu-
tions in Sections 1.1 and 1.2. Which method do you prefer, the discretization
or gradient method?

2 Max radius orbit transfer in a given time

Consider a rocket engine with constant thrust operating for a given time tf . The
problem is to find the thrust-direction θ(t), 0 ≤ t ≤ tf , to transfer a shuttle
from a given initial radius orbit to the largest possible orbit. Make the following
definitions:

• T ; constant thrust force.

• r̄; radial distance from the attracting center (the sun).

• ū,v̄; radial and tangential components of velocity, respectively.

• m; mass of the shuttle, the fuel consumption rate −ṁ is constant.

• θ; thrust direction angle.

• µ; gravitational constant of attracting center.

To simplify the presentation the following dimensionless variables are defined

r(t) =
1

r̄(0)
r̄(t), u(t) =

r̄2(0)

µtf
ū(t), v(t) =

√
r̄(0)

µ
v̄(t) (10)

and for a particular choice of the constant parameters the problem can be ex-
pressed as

min
θ(t), 0≤t≤tf

J = −r(tf )

s.t. ẋ = F (x, θ)

x(0) = x0

x(tf ) ∈ Sf

(11)

where state vector is x = (r u v)T and the dynamic model is

ẋ =

ṙ
u̇
v̇

 =

 u
v2

r − 1
r2 + a sin θ

−uv
r + a cos θ

 (12)
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Figure 2: The problem in Section 2. Maximize the orbit radius by controlling
the direction of the thrust.

and a(t) = T/(m0 − |ṁ|t), m0 = 1. The initial radius is 1 and the initial
velocity is 1 in the tangential direction. Thus, the initial state is x0 = (1 0 1)T .
The terminal constraints of u and v are derived from the conditions that the
radial speed must be 0 and the centrifugal force and gravitational force must be
balanced, i.e.,

Sf = {x ∈ R3|G(x) = 0}. (13)

where

G(x) =

(
u

v − 1√
r

)
. (14)

2.1 Boundary condition iteration (Shooting)

To solve this optimal control problem a TPBV problem will be defined and
solved by applying a boundary condition iteration (shooting) algorithm. Read
Section 7.5.2 in the book [1]. The idea here is to take small steps to the de-
sired solution, i.e., that the terminal constraints are zero. The Matlab function
fsolve will be used to update the initial guess of λ(0). Note that the shooting
approach can handle terminal state constraints easier than the basic gradient
algorithm used in Section (1.3), but the drawback is that a suitable start guess
of λ(0) is needed.

(a) Define λ = (λr λu λv)
T and write down the Hamiltonian and derive the

adjoint equations.

(b) The terminal constraints of the adjoint equations are given by

λ(tf ) = λ0∇ϕ(x(tf )) +Gx(x(tf ))
T ν, (15)

for some ν ∈ R2 (see Section 7.4 in the book [1]). We will only consider the
“normal” case here where λ0 = 1.

There are three terminal constraints in total. Two state constraints are
given by (13) and the last one is

λr(tf ) + 1− λv(tf )

2[r(tf )]3/2
= 0. (16)

Derive this constraint based on (15).

(c) Show that the control signal θ can be expressed as a function of λ, i.e.,
derive

tan θ =
λu

λv
. (17)

(d) The optimal control problem can be formulated as a TPBV problem defined
by the system equations in (12), the adjoint equation that is derived in (a),
the inital state condition x0 and the terminal conditions in (b). All the
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needed files already exist, you should only replace the three questions marks
with suitable code.

Complete the function maxRadiusOrbitTransferEqAndAdjointEq.m with
the system model (12) and the adjoint equations. Note that they are stacked
to be able to be solved concurrently. Then write the terminal constraints
in the function terminalStateCondition.m.

Run the main script mainMaxRadiusOrbitTransferShooting.m, but note
that you have to find an suitable initial value of λ(0). What is the numerical
value of the optimal cost? Which start guess of λ(0) did you use? What
happens if a bad initial λ(0) is used? Hint: The final radius should be
around 1.5. λ(0) = (−1 − 1 − 1)T should be ok as a start guess.

2.2 CasADi

Finally, the CasADi toolbox will be used to solve the optimal control problem.

Complete the function mainMaxRadiusOrbitTransferCasADi.m with the sys-
tem model (12), the terminal constraints (13), and the cost function. Solve
the problem with CasADi (see the initializing instructions in the exercises of
chapter 7 [1]). What is the numerical value of the optimal cost?
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