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Solutions
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1. (a) The Hamiltonian is given by

H(t, x, u, λ) ≜ f(t, x, u) + λT F (t, x, u)
= x + u2 + λx + λu + λ

Pointwise minimization yields

µ̃(t, x, λ) ≜ arg min
u

H(t, x, u, λ) = −1
2λ,

and the optimal control can be written as

u∗(t) ≜ µ̃(t, x(t), λ(t)) = −1
2λ(t)

The adjoint equation is given by

λ̇(t) = −λ(t) − 1,

which is a first order linear ODE and can thus be solved easily. The standard integrating
factor method yields

λ(t) = eC−t − 1,

for some constant C. The boundary condition is given by

λ (T ) = ∂ϕ

∂x
(T, x (T )) ⇐⇒ λ (T ) = 0,

Thus,

λ(t) = eT −t − 1,

and the optimal control is found by

u∗(t) = −1
2λ(t) = 1 − eT −t

2 .

(b) i. Since

J =
∫ 1

0
ẏdt = y(1) − y(0) = 1,

it holds that all y(·) ∈ C1[0, 1] such that y(0) = 0 and y(1) = 1 are minimal.
ii. Since

J =
∫ 1

0
yẏdt = 1

2

∫ 1

0

d

dt
(y2)dt = 1

2(y(1) − y(0))2 = 1
2 ,

it holds that all y(·) ∈ C1[0, 1] such that y(0) = 0 and y(1) = 1 are minimal.
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2. The problem to be solved is

minimize
u(·)

∫ T

0 u(t)dt

subject to ẋ1(t) = x2(t),
ẋ2(t) = cu(t)

x3(t) − g (1 − kx1(t)) ,

ẋ3(t) = −u(t),
x1(0) = h, x2(0) = ν, x3(0) = m,
x1 (T ) = 0, x2 (T ) = 0,
0 ≤ u(t) ≤ M.

The Hamiltonian is given by

H(t, x, u, λ) ≜ f(t, x, u) + λT F (t, x, u)

= u + λ1x2 + λ2

(
cu

x3
− g (1 − kx1)

)
− λ3u

= λ1x2 − λ2g (1 − kx1) +
(

1 + cλ2

x3
− λ3

)
u.

Pointwise minimization yields

µ̃(t, x, λ) ≜ arg min
u∈[0,M ]

H(t, x, u, λ)

= arg min
0≤u≤M

(
1 + cλ2

x3
− λ3

)
︸ ︷︷ ︸

≜σ

u

=


M, σ < 0
0, σ > 0
ũ σ = 0

where ũ ∈ [0, M ] is arbitrary. Thus, the optimal control is expressed by

u∗(t) ≜ µ̃(t, x(t), λ(t)) =

 M, σ(t) < 0
0, σ(t) > 0
ũ, σ(t) = 0

,

where the switching function is given by

σ(t) ≜ 1 + cλ2(t)
x3(t) − λ3(t)

The adjoint equations are

λ̇1(t) = − ∂H

∂x1
(x(t), u∗(t), λ(t)) = −gkλ2(t),

λ̇2(t) = − ∂H

∂x2
(x(t), u∗(t), λ(t)) = −λ1(t)

λ̇3(t) = − ∂H

∂x3
(x(t), u∗(t), λ(t)) = cλ2(t)u∗(t)

x2
3(t)

The boundary conditions are given by

λ (T ) − ∂ϕ

∂x
(T, x (T )) ⊥ Sf (T ) ⇐⇒

 λ1 (T )
λ2 (T )
λ3 (T )

 = ν1

 1
0
0

 + ν2

 0
1
0


which says that λ3 (T ) = 0, while λ1 (T ) and λ2 (T ) are free. This, yields no particular information
about the solution to the adjoint equations.
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Now, let us try to determine the number of switches. Using the state dynamics and the adjoint
equations, it follows that

σ̇(t) = cλ̇2(t)x3(t) − cλ2(t)ẋ3(t)
x2

3(t) − λ̇3(t)

= −cλ1(t)x3(t) + cλ2(t)u∗(t)
x2

3(t) − cλ2(t)u∗(t)
x2

3(t)

= −c
λ1(t)
x3(t) .

Since c > 0 and x3(t) ≥ 0, it holds that sign σ̇(t) = − sign λ1(t) and we need to know which values
λ1(t) can take. From the adjoint equations, we have

λ̈1(t) = −gkλ̇2(t) = gkλ1(t)

which has the solution

λ1(t) = Ae
√

gkt + Be−
√

gkt

Now, if A and B have the same signs, λ1(t) will never reach zero. If A and B have opposite signs,
λ1(t) has one isolated zero. This implies that σ̇(t) has at most one isolated zero. Thus, σ(t) can
only, at the most, pass zero two times and the optimal control is bang-bang. The only possible
sequences are thus {M, 0, M}, {0, M} and {M} (since the spacecraft should be brought to rest, all
sequences ending with a 0 are ruled out).

3. Define

xk =
{

0 if on activity g1 just before time tk ,

1 if on activity g2 just before time tk

uk =
{

0 continue current activity,

1 switch between activities

The state transition is

xk+1 = F (xk, uk) = (xk + uk) mode 2

and the profit for stage k is

f(xk, uk) =
∫ tk+1

tk

g1+F (xk,uk)(t)dt − ukc

The dynamic programming is then

VN (xN ) = 0
Vn(x) = max

u
{f(x, u) + Vn+1(x + u)} mode 2

4. (a) we start from the Bellman equation

V (x) = min
u

Q(x, u)

we have

γV (F (x, ū)) = min
u

γQ(F (x, ū), u)

By adding f(x, ū) to both sides of the above equation, the left hand side becomes Q(x, ū), and
therefore we have

Q(x, ū) = f(x, ū) + min
u

γQ(F (x, ū), u)
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(b) Let start with the assumption

Q1(F (x, ū), u) ≤ Q2(F (x, ū), u)

minimizing both side of the equation with respect to u yields

min
u

Q1(F (x, ū), u) ≤ min
u

Q2(F (x, ū), u)

hence by multiplying the both sides of the inequality by a factor γ and adding f(x, ū) to both
sides, we get

f(x, ū) + min
u

γQ1(F (x, ū), u) ≤ f(x, ū) + min
u

γQ2(F (x, ū), u)

also since TQ(Q)(x, ū) = f(x, ū) + min
u

γQ(F (x, ū), u), then we obtain

TQ(Q1)(x, ū) ≤ TQ(Q2)(x, ū)
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