TSRTO08: Optimal Control
Solutions
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(a) The Hamiltonian is given by

=zx+u+ A+ u—+ A

Pointwise minimization yields
1
A(t,z,\) £ argmin  H(t,z,u,\) = —5)\,
u

and the optimal control can be written as

which is a first order linear ODE and can thus be solved easily. The standard integrating
factor method yields

for some constant C. The boundary condition is given by

0
AT =22 (e (1) =A@ =0,
Thus,
At) =Tt -1,
and the optimal control is found by
1 1—el?
() = —=\(t) =
w(t) = —5A(0) =~

(b) i. Since

J:/O gt = y(1) — y(0) = 1,

it holds that all y(-) € C'[0,1] such that y(0) = 0 and y(1) = 1 are minimal.
ii. Since

7= [wie=1 [ o= oo -yo) = 2
_Oyy _2Odty —2y Yy T~y

it holds that all y(-) € C'[0,1] such that y(0) = 0 and y(1) = 1 are minimal.



2. The problem to be solved is

mini(n)lize J. T u(t)dt

subject to  @1(t) = x2(t),
Fat) = 243 — g (1= kas (1)),
£a(t) = —ult),
21(0) = h,22(0) = v, 23(0) = m,
T (T) - 07x2 (T) - 07
0<u(t) <M.

The Hamiltonian is given by

=u+ M22+ A2 (cu—g(l—kacl)> — \3u

zs3

A
= Mas — dog (1 — kz1) + <1+ Cx—? —)\3> u.
3

Pointwise minimization yields

f(t,z,\) £ argmin  H(t,z,u, \)
w€e[0,M]

A
= arg min (1 + “2 )\3> U

0<u<M T3
L5
M, o<0
=<¢0, o0>0
U c=0

where @ € [0, M] is arbitrary. Thus, the optimal control is expressed by

M, o(t)<0
u*(t) 2 alt,z(), A1) =< 0, o(t)>0,
u, o(t)=0
where the switching function is given by
A2(?)
21+ E — A3(t
o(t) () 3(t)
The adjoint equations are
. OH
A(t) = =5 (@(t), u" (), A(t)) = —gkAa(2),
X1
. OH
Ao (t) = =5 (a(t), u" (1), A(t)) = =Au(t)
€2
() = 28 ! _ cha(t)ur(t)
hot) = =g lt) ' (1) A1) = 2
The boundary conditions are given by
06 A (T) 1 0
)\(T)—a—(T,x(T))J_Sf Ty« | X)) | =i 0 |+wm]| 1
t A3 (T) 0 0

which says that A\s (T') = 0, while A\; (T') and Ay (T") are free. This, yields no particular information
about the solution to the adjoint equations.



Now, let us try to determine the number of switches. Using the state dynamics and the adjoint
equations, it follows that

C).\Q (t)xg (t) — C/\Q (t)jﬁg (t)

o(t) = 20 — As(t)
_ —chi(t)as(t) + cha()u™(t)  cha(t)u”(?)
3(t) z3(t)

>

1 (1)

3(t)

Since ¢ > 0 and z3(t) > 0, it holds that sign ¢ (t) = —sign A1 (¢) and we need to know which values
A1(t) can take. From the adjoint equations, we have

= —C

8

A (t) = —gkAa(t) = gk (t)
which has the solution
Ai(f) = AeVIR 4 Bem okt

Now, if A and B have the same signs, A1 (¢) will never reach zero. If A and B have opposite signs,
A1(t) has one isolated zero. This implies that J(¢) has at most one isolated zero. Thus, o(t) can
only, at the most, pass zero two times and the optimal control is bang-bang. The only possible
sequences are thus {M,0, M}, {0, M} and {M} (since the spacecraft should be brought to rest, all
sequences ending with a 0 are ruled out).

3. Define

0 if on activity g1 just before time ¢y ,
€T =
i 1 if on activity go just before time ¢,

0 continue current activity,
-
F 1 switch between activities
The state transition is
Tpt1 = F(zp,ug) = (v +ur) mode 2

and the profit for stage k is
tht1
flzr,uk) = / gl+F(xk,uk)(t)dt — ugcC
tk

The dynamic programming is then

VN(Z‘N) =0
Vn({,C) = m;;ix{f(ac,u) + Vn+1(x + U)} mode 2

4. (a) we start from the Bellman equation
V(z) = muin Q(z,u)
we have
WV (F(z,u)) = min - yQ(F(x,u),u)

By adding f(z,u) to both sides of the above equation, the left hand side becomes Q(z,«), and
therefore we have

Q($7ﬂ) = f(l‘,ﬂ) + muin ’}/Q(F($,’L_L),U)



(b) Let start with the assumption
Ql(F(xa ﬁ)a U) S QQ(F(Q'J, ﬁ)a U)
minimizing both side of the equation with respect to u yields

mgn Q1(F(z,u),u) < muin Q2(F(z,u),u)

hence by multiplying the both sides of the inequality by a factor vy and adding f(z,u) to both
sides, we get

f(.%',ﬂ) + Inuin 7Q1(F(x,ﬂ),u) < f(,’B7’L7,) + muin 7@2(F($7ﬂ)7u)

also since T (Q)(z,u) = f(z,u) + min  yQ(F(z,u),u), then we obtain

To(Q)(x,u) < To(Q2)(x,u)



