EXAM IN OPTIMAL CONTROL (TSRT08)

ROOM: FE249, TER2
TIME: Wednesday, March 13, 2024, 08.00-12.00
COURSE: TSRT08 OPTIMAL CONTROL
CODE: TEN1
DEPARTMENT: ISY
NUMBER OF EXERCISES: 4
NUMBER OF PAGES (including cover page): 3
EXAMINER: Anders Hansson, 070-3004401
VISITS: 09.00 and 11.00 by Reza Jafari
COURSE ADMINISTRATOR: Ninna Stensgård 013-282225, ninna.stensgard@liu.se

APPROVED TOOLS: Collections of formulas and tables printed by a publishing house, calculator. No other books are allowed.

SOLUTIONS: Linked from the course home page after the exam.
The exam can be inspected and checked out 2024-04-04, Room 2A:573, Bbuilding, entrance 25 , A-corridor, to the right.
PRELIMINARY GRADING: grade 315 points
grade $4 \quad 23$ points
grade 530 points
All solutions should be well motivated. Writing should be neat and clean.
Good Luck!

1. (a) Solve the optimal control problem

$$
\begin{array}{ll}
\text { minimize } & \int_{0}^{T}\left(x(t)+u^{2}(t)\right) d t \\
\text { subject to } & \dot{x}(t)=x(t)+u(t)+1, \\
& x(0)=0 \tag{6p}
\end{array}
$$

(b) Find the extremal of the functionals
i. $\int_{0}^{1} \dot{y} d t$
ii. $\int_{0}^{1} y \dot{y} d t$
when $y(0)=0$ and $y(1)=1$.
2. A spacecraft approaching the face of the moon can be described by the following equations

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t) & =\frac{c u(t)}{x_{3}(t)}-g\left(1-k x_{1}(t)\right) \\
\dot{x}_{3}(t) & =-u(t)
\end{aligned}
$$

where $u(t) \in[0, M]$ for all t, and the initial conditions are given by

$$
x(0)=(h, \nu, m)^{T}
$$

with the positive constants c, g, k, M, h, ν and m. The state x_{1} is the altitude above the surface, x_{2} the velocity and x_{3} the mass of the spacecraft. Calculate the structure of the fuel minimizing control that brings the craft to rest on the surface of the moon. The fuel consumption is

$$
\int_{0}^{T} u(t) d t
$$

and the time T is to be optimized. Show that the optimal control law is bang-bang with at most two switches.
3. A decision maker must continually choose between two activites over a time interval $[0, T]$. Choosing activity i at time t, where $i=1,2$, earns a reward at a rate $g_{i}(t)$, and every switch between the two activity $\operatorname{costs} c>0$. Thus, for example, the reward for starting with activity 1 , switching to 2 at time t_{1}, and switching back to 1 at time $t_{2}>t_{1}$ earns total reward

$$
\int_{0}^{t_{1}} g_{1}(t) d t+\int_{t_{1}}^{t_{2}} g_{2}(t) d t+\int_{t_{2}}^{T} g_{1}(t) d t-2 c .
$$

We want to find a set of switching times that maximize the total reward. Assume that the function $g_{1}(t)-g_{2}(t)$ changes sign a finite number of times in the interval $[0, T]$. Formulate the problem as a optimization problem and write down the corresponding dynamic programming recursion.
Hint: Let $t_{1}<t_{2}<\ldots<t_{N-1}$ denote the times where $g_{1}(t)=g_{2}(t)$.
It is never optimal to switch activity at any other times! We can therefore divide the problem into $N-1$ stages, where we want to determine for each stage whether or not to switch.
4. (a) Consider the Bellman equation

$$
V(x)=\min _{u} Q(x, u)
$$

where $Q(x, u)=f(x, u)+\gamma V(F(x, u))$ for some functions f and F. Show that the following equation holds

$$
\begin{equation*}
Q(x, \bar{u})=f(x, \bar{u})+\min _{u} \gamma Q(F(x, \bar{u}), u) \tag{4p}
\end{equation*}
$$

if the Bellman equation holds.
(b) Let T_{Q} be defined as

$$
T_{Q}(Q)(x, \bar{u})=f(x, \bar{u})+\min _{u} \gamma Q(F(x, \bar{u}), u)
$$

and show that

$$
\begin{equation*}
T_{Q}\left(Q_{1}\right)(x, \bar{u}) \leq T_{Q}\left(Q_{2}\right)(x, \bar{u}) \tag{6p}
\end{equation*}
$$

for all (x, \bar{u}), if $Q_{1}(x, \bar{u}) \leq Q_{2}(x, \bar{u})$ for all (x, \bar{u}).

