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1. (a) Define x = y, u = ẏ and f(t, x, u) = x2 + u2 − 2x sin t, then the Hamiltonian is given by

H(t, x, u, λ) = x2 + u2 − 2x sin t + λu

The following equations must hold

y(0) = 0 (1.1a)

0 = ∂H

∂u
(t, x, u, λ) = 2u + λ (1.1b)

λ̇ = −∂H

∂x
(t, x, u, λ) = −2x + 2 sin t (1.1c)

λ(1) = 0 (1.1d)

Equation (1.1b) gives λ̇ = −2u̇ = −2ÿ and with (1.1c) we have

ÿ − y = − sin t

with the solution

y(t) = c1et + c2e−t + 1
2 sin t, c1, c2 ∈ R

where (1.1a) gives the relationship of c1 and c2 as

c2 = −c1

and where (1.1d) gives

c2 = c1e2 + e

2 cos 1

Consequently, we have

y(t) = − e cos 1
2 (e2 + 1)

(
et − e−t

)
+ 1

2 sin t

(b) Define x = y, u = ẏ and f(t, x, u) = u2/t3, then the Hamiltonian is given by

H(t, x, u, λ) = u2t−3 + λu

The following equations must hold

y(0) = 0 (1.2a)

0 =∂H

∂u
(t, x, u, λ) = 2ut−3 + λ (1.2b)

λ̇ = −∂H

∂x
(t, x, u, λ) = 0 (1.2c)

λ(1) = 0 (1.2d)
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Equation (1.2c) gives λ = c1, c1 ∈ R, and (1.2d) that c1 = 0. Then (1.2b) gives u(t) = 0 which
implies y(t) = c2, c2 ∈ R. Finally, with (1.2a) this gives

y(t) = 0

(c) Analogous to (a). The system equation is

ÿ − y = et

with the solution

y(t) = c1et + c2e−t + 1
2 tet

where

c2 = −c1

and where

c2 = e2 (c1 + 1)

which gives

y(t) = −e2

e2 + 1
(
et − e−t

)
+ 1

2 tet
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2. (a) The discrete optimization problem is given by

minimize
u0,u1

r (x2 − T )2 +
∑1

k=0 u2
k

subject to xk+1 = (1 − a)xk + auk, k = 0, 1,
x0 given,
uk ∈ R, k = 0, 1.

(b) With a = 1/2, T = 0 and r = 1 this can be cast on standard form with N = 2, ϕ(x) =
x2, f(k, x, u) = u2, and F (k, x, u) = 1

2 x + 1
2 u. The DP algorithm gives us:

Stage k = N = 2

V2(x) = x2

Stage k = 1 :

V1(x) = min
u

{
u2 + V2(F (1, x, u))

}
= min

u

{
u2 +

(
1
2x + 1

2u

)2
}

(2.1)

The minimization is done by setting the derivative, w.r.t. u, to zero, since the function is
strictly convex in u. Thus, we have

2u +
(

1
2x + 1

2u

)
= 0

which gives the control function

u∗
1 = µ1(x) = −1

5x

Note that we now have computed the optimal control for each possible state x. By substituting
the optimal u∗

1 into (2.1) we obtain

V1(x) = 1
5x2 (2.2)

Stage k = 0 :

V0(x) = min
u

{
u2 + V1(F (0, x, u)}

= min
u

{
u2 + V1

(
1
2x + 1

2u

)}
Substituting V1(x) by (2.2) and minimizing by setting the derivative, w.r.t. u, to zero gives
(after some calculations) the optimal control

u∗
0 = µ0(x) = − 1

21x (2.3)

and the optimal cost

V0(x) = 1
21x2 (2.4)
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(c) This can be cast on standard form with N = 2, ϕ(x) = r(x − T )2, f(k, x, u) = u2, and
F (k, x, u) = (1 − a)x + au. The DP algorithm gives us:
Stage k = N = 2 :

V2(x) = r(x − T )2

Stage k = 1 :

V1(x) = min
u

{
u2 + V2(F (1, x, u))

}
= min

u

{
u2 + r((1 − a)x + au − T )2}

(2.5)

The minimization is done by setting the derivative, w.r.t. u, to zero, since the function is
strictly convex in u. Thus, we have

2u + 2ra((1 − a)x + au − T ) = 0

which gives the control function

u∗
1 = µ1(x) = ra(T − (1 − a)x)

1 + ra2

Note that we now have computed the optimal control for each possible state x. By substituting
the optimal u∗

1 into (2.5) we obtain (after some work)

V1(x) = r((1 − a)x − T )2

1 + ra2 (2.6)

Stage k = 0 :

V0(x) = min
u

{
u2 + V1(F (0, x, u)}

= min
u

{
u2 + V1((1 − a)x + au)

}
Substituting V1(x) by (2.6) and minimizing by setting the derivative, w.r.t. u, to zero gives
(after some calculations) the optimal control

u∗
0 = µ0(x) =

r(1 − a)a
(
T − (1 − a)2x

)
1 + ra2 (1 + (1 − a)2) (2.7)

and the optimal cost

V0(x) =
r

(
(1 − a)2x − T

)2

1 + ra2 (1 + (1 − a)2) (2.8)

3. (a) The Q-function makes it possible to solve optimal control problems without knowing an explicit
model of the system to control. This is possible since the Q-function depends on both the state
and the control signal.

(b) Instead of using reinforcement learning one can first perform system identification using ex-
periments to obtain a model of the system to control, and then traditional optimal control can
be used based on the model obtained. Also adaptive control can be used.

(c) The key assumption is that a repeated task should be carried out, typically following the same
trajectory over and over again.
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4. The problem can be rewritten to standard form as

minimize
u(·)

−x (T ) −
∫ T

0 (1 − u(t))x(t)dt

subject to ẋ(t) = αu(t)x(t), 0 < α < 1
x(0) = x0 > 0,
0 ≤ u(t) ≤ 1, ∀t ∈ [0, T ] .

(4.1)

The Hamiltonian is given by

H(t, x, u, λ) ≜ f(t, x, u) + λT F (t, x, u) = −(1 − u)x + λαux

Pointwise optimization of the Hamiltonian yields

µ̃(t, x, λ) ≜ arg min
u∈[0,1]

H(t, x, u, λ)

= arg min
u∈[0,1]

{−(1 − u)x + λαux}

= arg min
u∈[0,1]

{(1 + λα)ux}

=

 1, (1 + λα)x < 0
0, (1 + λα)x > 0
ũ, (1 + λα)x = 0

,

where ũ is an arbitrary value in [0, 1]. To be able to find an analytical solution, it is important
to remove the variable x from the pointwise optimal solution above. Otherwise we are going
to end up with a PDE, which is difficult to solve. In this particular case it is simple. Since
x0 > 0, α > 0 and u > 0 in (4.1), it follows that x(t) > 0 for all t ∈ [0, T ]. Hence, the optimal
control is given by

u∗(t) ≜ µ̃(t, x(t), λ(t)) =


1, (1 + λα) < 0
0, (1 + λα) > 0
ũ, (1 + λα) = 0

and we define the switching function as

σ(t) ≜ 1 + λ(t)α

The adjoint equations are now given by

λ̇(t) ≜ −∂H

∂x
(t, x(t), u∗(t), λ(t))

= (1 − u∗(t)) − αλ(t)u∗(t)

=


−αλ(t), (1 + λα) < 0, (u∗(t) = 1)
1, (1 + λα) > 0, (u∗(t) = 0)
1, (1 + λα) = 0

(4.2)

The boundary constraints are
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λ (T ) − ∂ϕ

∂x
(T, x (T )) ⊥ ST (T ) ⇐⇒ λ (T ) + 1 = 0

which implies that λ (T ) = −1. Thus

σ (T ) = 1 + λ (T ) α = 1 − α > 0

so that u∗ (T ) = 0. What remains to be determined is how many switches occurs. A hint
of the number of switches can often be found by considering the value of σ̇(t)|σ(t)=0. From
(4.2), it follows that

σ̇(t)|σ(t)=0 = λ̇(t)α
∣∣
1+λ(t)α=0 = α > 0

Hence, there can only be at most one switch, since we can pass σ(t) = 0 only once. Since
u∗ (T ) = 0, it is not possible that u∗(t) = 1 for all t ∈ [0, T ]. Thus,

u∗(t) =
{

1, 0 ≤ t ≤ t′

0, t′ ≤ t ≤ T

for some unknown switching time t′ ∈ [0, T ] The switching occurs when

0 = σ (t′) = 1 + λ (t′) α

and to find the value of t′ we need to determine the value of λ (t′). From (4.2), it holds that
during the period t′ ≤ t ≤ T where u∗(t) = 0 we have that

λ̇(t) = 1, λ (T ) = −1

which has the solution λ(t) = t − T − 1. Since σ (t′) = 0 is equivalent to λ (t′) = −1/α, we get

t′ = T + 1 − 1
α

and the optimal control is thus given by

u∗(t) =
{

1, 0 ≤ t ≤ T + 1 − 1
α

0, T + 1 − 1
α ≤ t ≤ T

It is worth noting that when α is small, t′ will become negative and the optimal control law
is u∗(t) = 0 for all t ∈ [0, T ].
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